Biblio
Differential Privacy under Incalculable Sensitivity. 2022 6th International Conference on Cryptography, Security and Privacy (CSP). :27–31.
.
2022. Differential privacy mechanisms have been proposed to guarantee the privacy of individuals in various types of statistical information. When constructing a probabilistic mechanism to satisfy differential privacy, it is necessary to consider the impact of an arbitrary record on its statistics, i.e., sensitivity, but there are situations where sensitivity is difficult to derive. In this paper, we first summarize the situations in which it is difficult to derive sensitivity in general, and then propose a definition equivalent to the conventional definition of differential privacy to deal with them. This definition considers neighboring datasets as in the conventional definition. Therefore, known differential privacy mechanisms can be applied. Next, as an example of the difficulty in deriving sensitivity, we focus on the t-test, a basic tool in statistical analysis, and show that a concrete differential privacy mechanism can be constructed in practice. Our proposed definition can be treated in the same way as the conventional differential privacy definition, and can be applied to cases where it is difficult to derive sensitivity.
Digital Certificate Authentication with Three-Level Cryptography (SHA-256, DSA, 3DES). 2022 International Seminar on Application for Technology of Information and Communication (iSemantic). :343–350.
.
2022. The rapid development of technology, makes it easier for everyone to exchange information and knowledge. Exchange information via the internet is threatened with security. Security issues, especially the issue of the confidentiality of information content and its authenticity, are vital things that must protect. Peculiarly for agencies that often hold activities that provide certificates in digital form to participants. Digital certificates are digital files conventionally used as proof of participation or a sign of appreciation owned by someone. We need a security technology for certificates as a source of information known as cryptography. This study aims to validate and authenticate digital certificates with digital signatures using SHA-256, DSA, and 3DES. The use of the SHA-256 hash function is in line with the DSA method and the implementation of 3DES which uses 2 private keys so that the security of digital certificate files can be increased. The pixel changes that appear in the MSE calculation have the lowest value of 7.4510 and the highest value of 165.0561 when the file is manipulated, it answers the security of the proposed method is maintained because the only valid file is the original file.
Digital Forensic Analysis on Caller ID Spoofing Attack. 2022 7th International Workshop on Big Data and Information Security (IWBIS). :95—100.
.
2022. Misuse of caller ID spoofing combined with social engineering has the potential as a means to commit other crimes, such as fraud, theft, leaking sensitive information, spreading hoaxes, etc. The appropriate forensic technique must be carried out to support the verification and collection of evidence related to these crimes. In this research, a digital forensic analysis was carried out on the BlueStacks emulator, Redmi 5A smartphone, and SIM card which is a device belonging to the victim and attacker to carry out caller ID spoofing attacks. The forensic analysis uses the NIST SP 800-101 R1 guide and forensic tools FTK imager, Oxygen Forensic Detective, and Paraben’s E3. This research aims to determine the artifacts resulting from caller ID spoofing attacks to assist in mapping and finding digital evidence. The result of this research is a list of digital evidence findings in the form of a history of outgoing calls, incoming calls, caller ID from the source of the call, caller ID from the destination of the call, the time the call started, the time the call ended, the duration of the call, IMSI, ICCID, ADN, and TMSI.
The Digital Identity Management System Model Based on Blockchain. 2022 International Conference on Blockchain Technology and Information Security (ICBCTIS). :131—137.
.
2022. Digital identity management system is the securi-ty infrastructure of computer and internet applications. However, currently, most of the digital identity management systems are faced with problems such as the difficulty of cross-domain authentication and interoperation, the lack of credibility of identity authentication, the weakness of the security of identity data. Although the advantages of block-chain technology have attached the attentions of experts and scholars in the field of digital identity management and many digital identity management systems based on block-chain have been built, the systems still can't completely solve the problems mentioned above. Therefore, in this pa-per, an effective digital identity management system model is proposed which combines technologies of self-sovereign identity and oracle with blockchain so as to pave a way in solving the problems mentioned above and constructing a secure and reliable digital identity management system.
Digital Signature Performance of a New Quantum Safe Multivariate Polynomial Public Key Algorithm. 2022 7th International Conference on Computer and Communication Systems (ICCCS). :419—424.
.
2022. We discuss the performance of a new quantumsafe multivariate digital signature scheme proposed recently, called the Multivariate Polynomial Public Key Digital Signature (MPPK DS) scheme. Leveraging MPPK KEM or key exchange mechanism, the MPPK DS scheme is established using modular exponentiation with a randomly chosen secret base from a prime field. The security of the MPPK DS algorithm largely benefits from a generalized safe prime associated with the said field and the Euler totient function. We can achieve NIST security levels I, III, and V over a 64-bit prime field, with relatively small public key sizes of 128 bytes, 192 bytes, and 256 bytes for security levels I, III, and V, respectively. The signature sizes are 80 bytes for level I, 120 bytes for level III, and 160 bytes for level V. The MPPK DS scheme offers probabilistic procedures for signing and verification. That is, for each given signing message, a signer can randomly pick a base integer to be used for modular exponentiation with a private key, and a verifier can verify the signature with the digital message, based on the verification relationship, using any randomly selected noise variables. The verification process can be repeated as many times as the verifier wishes for different noise values, however, for a true honest signature, the verification will always pass. This probabilistic feature largely restricts an adversary to perform spoofing attacks. In this paper, we conduct some performance analyses by implementing MPPK DS in Java. We compare its performance with benchmark performances of NIST PQC Round 3 finalists: Rainbow, Dilithium, and Falcon. Overall, the MPPK DS scheme demonstrates equivalent or better performance, and much smaller public key, as well as signature sizes, compared to the three NIST PQC Round 3 finalists.
Digital Signature with Message Security Process. 2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE). :182–187.
.
2022. This is the time of internet, and we are communicating our confidential data over internet in daily life. So, it is necessary to check the authenticity in communication to stop non-repudiation, of the sender. We are using the digital signature for stopping the non-repudiation. There are many versions of digital signature are available in the market. But in every algorithm, we are sending the original message and the digest message to the receiver. Hence, there is no security applied on the original message. In this paper we are proposed an algorithm which can secure the original and its integrity. In this paper we are using the RSA algorithm as the encryption and decryption algorithm, and SHA256 algorithm for making the hash.
DIP Learning on CAS-Lock: Using Distinguishing Input Patterns for Attacking Logic Locking. 2022 Design, Automation & Test in Europe Conference & Exhibition (DATE). :688–693.
.
2022. The globalization of the integrated circuit (IC) manufacturing industry has lured the adversary to come up with numerous malicious activities in the IC supply chain. Logic locking has risen to prominence as a proactive defense strategy against such threats. CAS-Lock (proposed in CHES'20), is an advanced logic locking technique that harnesses the concept of single-point function in providing SAT-attack resiliency. It is claimed to be powerful and efficient enough in mitigating existing state-of-the-art attacks against logic locking techniques. Despite the security robustness of CAS-Lock as claimed by the authors, we expose a serious vulnerability and by exploiting the same we devise a novel attack algorithm against CAS-Lock. The proposed attack can not only reveal the correct key but also the exact AND/OR structure of the implemented CAS-Lock design along with all the key gates utilized in both the blocks of CAS-Lock. It simply relies on the externally observable Distinguishing Input Patterns (DIPs) pertaining to a carefully chosen key simulation of the locked design without the requirement of structural analysis of any kind of the locked netlist. Our attack is successful against various AND/OR cascaded-chain configurations of CAS-Lock and reports 100% success rate in recovering the correct key. It has an attack complexity of \$\textbackslashmathcalO(m)\$, where \$m\$ denotes the number of DIPs obtained for an incorrect key simulation.
ISSN: 1558-1101
Discovery of AI/ML Supply Chain Vulnerabilities within Automotive Cyber-Physical Systems. 2022 IEEE International Conference on Assured Autonomy (ICAA). :93—96.
.
2022. Steady advancement in Artificial Intelligence (AI) development over recent years has caused AI systems to become more readily adopted across industry and military use-cases globally. As powerful as these algorithms are, there are still gaping questions regarding their security and reliability. Beyond adversarial machine learning, software supply chain vulnerabilities and model backdoor injection exploits are emerging as potential threats to the physical safety of AI reliant CPS such as autonomous vehicles. In this work in progress paper, we introduce the concept of AI supply chain vulnerabilities with a provided proof of concept autonomous exploitation framework. We investigate the viability of algorithm backdoors and software third party library dependencies for applicability into modern AI attack kill chains. We leverage an autonomous vehicle case study for demonstrating the applicability of our offensive methodologies within a realistic AI CPS operating environment.
Disparity Analysis Between the Assembly and Byte Malware Samples with Deep Autoencoders. 2022 19th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP). :1—4.
.
2022. Malware attacks in the cyber world continue to increase despite the efforts of Malware analysts to combat this problem. Recently, Malware samples have been presented as binary sequences and assembly codes. However, most researchers focus only on the raw Malware sequence in their proposed solutions, ignoring that the assembly codes may contain important details that enable rapid Malware detection. In this work, we leveraged the capabilities of deep autoencoders to investigate the presence of feature disparities in the assembly and raw binary Malware samples. First, we treated the task as outliers to investigate whether the autoencoder would identify and justify features as samples from the same family. Second, we added noise to all samples and used Deep Autoencoder to reconstruct the original samples by denoising. Experiments with the Microsoft Malware dataset showed that the byte samples' features differed from the assembly code samples.
Distributed Secondary Control for Voltage Restoration of ESSs in a DC Microgrid. 2022 13th Power Electronics, Drive Systems, and Technologies Conference (PEDSTC). :431—436.
.
2022. Due to the intermittent nature of renewable energy sources, the implementation of energy storage systems (ESSs) is crucial for the reliable operation of microgrids. This paper proposes a peer-to-peer distributed secondary control scheme for accurate voltage restoration of distributed ESS units in a DC microgrid. The presented control framework only requires local and neighboring information to function. Besides, the ESSs communicate with each other through a sparse network in a discrete fashion compared to existing approaches based on continuous data exchange. This feature ensures reliability, expandability, and flexibility of the proposed strategy for a more practical realization of distributed control paradigm. A simulation case study is presented using MATLAB/Simulink to illustrate the performance and effectiveness of the proposed control strategy.
Diverse Approaches Have Been Presented To Mitigate SQL Injection Attack, But It Is Still Alive: A Review. 2022 International Conference on Computer and Applications (ICCA). :1–5.
.
2022. A huge amount of stored and transferred data is expanding rapidly. Therefore, managing and securing the big volume of diverse applications should have a high priority. However, Structured Query Language Injection Attack (SQLIA) is one of the most common dangerous threats in the world. Therefore, a large number of approaches and models have been presented to mitigate, detect or prevent SQL injection attack but it is still alive. Most of old and current models are created based on static, dynamic, hybrid or machine learning techniques. However, SQL injection attack still represents the highest risk in the trend of web application security risks based on several recent studies in 2021. In this paper, we present a review of the latest research dealing with SQL injection attack and its types, and demonstrating several types of most recent and current techniques, models and approaches which are used in mitigating, detecting or preventing this type of dangerous attack. Then, we explain the weaknesses and highlight the critical points missing in these techniques. As a result, we still need more efforts to make a real, novel and comprehensive solution to be able to cover all kinds of malicious SQL commands. At the end, we provide significant guidelines to follow in order to mitigate such kind of attack, and we strongly believe that these tips will help developers, decision makers, researchers and even governments to innovate solutions in the future research to stop SQLIA.
DNN aided PSO based-scheme for a Secure Energy Efficiency Maximization in a cooperative NOMA system with a non-linear EH. 2022 Thirteenth International Conference on Ubiquitous and Future Networks (ICUFN). :155–160.
.
2022. Physical layer security is an emerging security area to tackle wireless security communications issues and complement conventional encryption-based techniques. Thus, we propose a novel scheme based on swarm intelligence optimization technique and a deep neural network (DNN) for maximizing the secrecy energy efficiency (SEE) in a cooperative relaying underlay cognitive radio- and non-orthogonal multiple access (NOMA) system with a non-linear energy harvesting user which is exposed to multiple eavesdroppers. Satisfactorily, simulation results show that the proposed particle swarm optimization (PSO)-DNN framework achieves close performance to that of the optimal solutions, with a meaningful reduction in computation complexity.
Domain Infused Conversational Response Generation for Tutoring based Virtual Agent. 2022 International Joint Conference on Neural Networks (IJCNN). :1–8.
.
2022. Recent advances in deep learning typically, with the introduction of transformer based models has shown massive improvement and success in many Natural Language Processing (NLP) tasks. One such area which has leveraged immensely is conversational agents or chatbots in open-ended (chit-chat conversations) and task-specific (such as medical or legal dialogue bots etc.) domains. However, in the era of automation, there is still a dearth of works focused on one of the most relevant use cases, i.e., tutoring dialog systems that can help students learn new subjects or topics of their interest. Most of the previous works in this domain are either rule based systems which require a lot of manual efforts or are based on multiple choice type factual questions. In this paper, we propose EDICA (Educational Domain Infused Conversational Agent), a language tutoring Virtual Agent (VA). EDICA employs two mechanisms in order to converse fluently with a student/user over a question and assist them to learn a language: (i) Student/Tutor Intent Classification (SIC-TIC) framework to identify the intent of the student and decide the action of the VA, respectively, in the on-going conversation and (ii) Tutor Response Generation (TRG) framework to generate domain infused and intent/action conditioned tutor responses at every step of the conversation. The VA is able to provide hints, ask questions and correct student's reply by generating an appropriate, informative and relevant tutor response. We establish the superiority of our proposed approach on various evaluation metrics over other baselines and state of the art models.
ISSN: 2161-4407
DP-BEGAN: A Generative Model of Differential Privacy Algorithm. 2022 International Conference on Computer Engineering and Artificial Intelligence (ICCEAI). :168–172.
.
2022. In recent years, differential privacy has gradually become a standard definition in the field of data privacy protection. Differential privacy does not need to make assumptions about the prior knowledge of privacy adversaries, so it has a more stringent effect than existing privacy protection models and definitions. This good feature has been used by researchers to solve the in-depth learning problem restricted by the problem of privacy and security, making an important breakthrough, and promoting its further large-scale application. Combining differential privacy with BEGAN, we propose the DP-BEGAN framework. The differential privacy is realized by adding carefully designed noise to the gradient of Gan model training, so as to ensure that Gan can generate unlimited synthetic data that conforms to the statistical characteristics of source data and does not disclose privacy. At the same time, it is compared with the existing methods on public datasets. The results show that under a certain privacy budget, this method can generate higher quality privacy protection data more efficiently, which can be used in a variety of data analysis tasks. The privacy loss is independent of the amount of synthetic data, so it can be applied to large datasets.
Drone Forensics: A Case Study on DJI Mavic Air 2. 2022 24th International Conference on Advanced Communication Technology (ICACT). :291—296.
.
2022. With the inundation of more cost effective and improved flight performance Unmanned Aerial Vehicles (UAVs) into the consumer market, we have seen more uses of these for both leisure and business purposes. As such, demand for digital forensic examination on these devices has seen an increase as well. This research will explore and discuss the forensic examination process on one of the more popular brands of UAV in Singapore, namely DJI. The findings are from the examination of the exposed File Transfer Protocol (FTP) channel and the extraction of the Data-at-Rest on the memory chip of the drone. The extraction was done using the Chip-Off and Chip-On technique.
Dynamic Cat-Boost Enabled Keystroke Analysis for User Stress Level Detection. 2022 International Conference on Computational Intelligence and Sustainable Engineering Solutions (CISES). :556–560.
.
2022. The impact of digital gadgets is enormous in the current Internet world because of the easy accessibility, flexibility and time-saving benefits for the consumers. The number of computer users is increasing every year. Meanwhile, the time spent and the computers also increased. Computer users browse the internet for various information gathering and stay on the internet for a long time without control. Nowadays working people from home also spend time with the smart devices, computers, and laptops, for a longer duration to complete professional work, personal work etc. the proposed study focused on deriving the impact factors of Smartphones by analyzing the keystroke dynamics Based on the usage pattern of keystrokes the system evaluates the stress level detection using machine learning techniques. In the proposed study keyboard users are intended for testing purposes. Volunteers of 200 members are collectively involved in generating the test dataset. They are allowed to sit for a certain frame of time to use the laptop in the meanwhile the keystroke of the Mouse and keyboard are recorded. The system reads the dataset and trains the model using the Dynamic Cat-Boost algorithm (DCB), which acts as the classification model. The evaluation metrics are framed by calculating Euclidean distance (ED), Manhattan Distance (MahD), Mahalanobis distance (MD) etc. Quantitative measures of DCB are framed through Accuracy, precision and F1Score.
Dynamic Iris-Based Key Generation Scheme during Iris Authentication Process. 2022 8th International Conference on Contemporary Information Technology and Mathematics (ICCITM). :364–368.
.
2022. The robustness of the encryption systems in all of their types depends on the key generation. Thus, an encryption system can be said robust if the generated key(s) are very complex and random which prevent attackers or other analytical tools to break the encryption system. This paper proposed an enhanced key generation based on iris image as biometric, to be implemented dynamically in both of authentication process and data encryption. The captured iris image during the authentication process will be stored in a cloud server to be used in the next login to decrypt data. While in the current login, the previously stored iris image in the cloud server would be used to decrypt data in the current session. The results showed that the generated key meets the required randomness for several NIST tests that is reasonable for one use. The strength of the proposed approach produced unrepeated keys for encryption and each key will be used once. The weakness of the produced key may be enhanced to become more random.
Dynamic malicious code detection technology based on deep learning. 2022 20th International Conference on Optical Communications and Networks (ICOCN). :1–3.
.
2022. In this paper, the malicious code is run in the sandbox in a safe and controllable environment, the API sequence is deduplicated by the idea of the longest common subsequence, and the CNN and Bi-LSTM are integrated to process and analyze the API sequence. Compared with the method, the method using deep learning can have higher accuracy and work efficiency.
Dynamic Security Level Assessment of Special Protection System (SPS) Using Fuzzy Techniques. 2022 International Seminar on Intelligent Technology and Its Applications (ISITIA). :377—382.
.
2022. This study will be focused on efforts to increase the reliability of the Bangka Electricity System by designing the interconnection of the Bangka system with another system that is stronger and has a better energy mix, the Sumatra System. The novelty element in this research is the design of system protection using Special Protection System (SPS) as well as a different assessment method using the Fuzzy Technique This research will analyze the implementation of the SPS event-based and parameter-based as a new defense scheme by taking corrective actions to keep the system stable and reliable. These actions include tripping generators, loads, and reconfiguring the system automatically and quickly. The performance of this SPS will be tested on 10 contingency events with four different load profiles and the system response will be observed in terms of frequency stability, voltage, and rotor angle. From the research results, it can be concluded that the SPS performance on the Bangka-Sumatra Interconnection System has a better and more effective performance than the existing defense scheme, as evidenced by the results of dynamic security assessment (DSA) testing using Fuzzy Techniques.
An Early Warning Analysis Model of Metering Equipment Based on Federated Hybrid Expert System. 2022 15th International Symposium on Computational Intelligence and Design (ISCID). :217—220.
.
2022. The smooth operation of metering equipment is inseparable from the monitoring and analysis of equipment alarm events by automated metering systems. With the generation of big data in power metering and the increasing demand for information security of metering systems in the power industry, how to use big data and protect data security at the same time has become a hot research field. In this paper, we propose a hybrid expert model based on federated learning to deal with the problem of alarm information analysis and identification. The hybrid expert system can divide the metering warning problem into multiple sub-problems for processing, which greatly improves the recognition and prediction accuracy. The experimental results show that our model has high accuracy in judging and identifying equipment faults.
ECU Identification using Neural Network Classification and Hyperparameter Tuning. 2022 IEEE International Workshop on Information Forensics and Security (WIFS). :1–6.
.
2022. Intrusion detection for Controller Area Network (CAN) protocol requires modern methods in order to compete with other electrical architectures. Fingerprint Intrusion Detection Systems (IDS) provide a promising new approach to solve this problem. By characterizing network traffic from known ECUs, hazardous messages can be discriminated. In this article, a modified version of Fingerprint IDS is employed utilizing both step response and spectral characterization of network traffic via neural network training. With the addition of feature set reduction and hyperparameter tuning, this method accomplishes a 99.4% detection rate of trusted ECU traffic.
ISSN: 2157-4774
Edge Intelligence-based Obstacle Intrusion Detection in Railway Transportation. GLOBECOM 2022 - 2022 IEEE Global Communications Conference. :2981—2986.
.
2022. Train operation is highly influenced by the rail track state and the surrounding environment. An abnormal obstacle on the rail track will pose a severe threat to the safe operation of urban rail transit. The existing general obstacle detection approaches do not consider the specific urban rail environment and requirements. In this paper, we propose an edge intelligence (EI)-based obstacle intrusion detection system to detect accurate obstacle intrusion in real-time. A two-stage lightweight deep learning model is designed to detect obstacle intrusion and obtain the distance from the train to the obstacle. Edge computing (EC) and 5G are used to conduct the detection model and improve the real-time detection performance. A multi-agent reinforcement learning-based offloading and service migration model is formulated to optimize the edge computing resource. Experimental results show that the two-stage intrusion detection model with the reinforcement learning (RL)-based edge resource optimization model can achieve higher detection accuracy and real-time performance compared to traditional methods.
Effect of Timers on the Keystroke Pattern of the Student in a Computer Based Exam. 2022 IEEE 6th Conference on Information and Communication Technology (CICT). :1–6.
.
2022. This research studies the effect of a countdown timer and a count-up timer on the keystroke pattern of the student and finds out whether changing the timer type changes the keystroke pattern. It also points out which timer affects more students in a timer environment during exams. We used two hypothesis testing statistical Algorithms, namely, the Two-Sample T-Test and One-way ANOVA Test, for analysis to identify the effect of different times our whether significant differences were found in the keystroke pattern or not when different timers were used. The supporting results have been found with determines that timer change can change the keystroke pattern of the student and from the study of hypothesis testing, different students result from different types of stress when they are under different timer environments.
Effective DDoS Attack Detection using Deep Generative Radial Neural Network in the Cloud Environment. 2022 7th International Conference on Communication and Electronics Systems (ICCES). :675—681.
.
2022. Recently, internet services have increased rapidly due to the Covid-19 epidemic. As a result, cloud computing applications, which serve end-users as subscriptions, are rising. Cloud computing provides various possibilities like cost savings, time and access to online resources via the internet for end-users. But as the number of cloud users increases, so does the potential for attacks. The availability and efficiency of cloud computing resources may be affected by a Distributed Denial of Service (DDoS) attack that could disrupt services' availability and processing power. DDoS attacks pose a serious threat to the integrity and confidentiality of computer networks and systems that remain important assets in the world today. Since there is no effective way to detect DDoS attacks, it is a reliable weapon for cyber attackers. However, the existing methods have limitations, such as relatively low accuracy detection and high false rate performance. To tackle these issues, this paper proposes a Deep Generative Radial Neural Network (DGRNN) with a sigmoid activation function and Mutual Information Gain based Feature Selection (MIGFS) techniques for detecting DDoS attacks for the cloud environment. Specifically, the proposed first pre-processing step uses data preparation using the (Network Security Lab) NSL-KDD dataset. The MIGFS algorithm detects the most efficient relevant features for DDoS attacks from the pre-processed dataset. The features are calculated by trust evaluation for detecting the attack based on relative features. After that, the proposed DGRNN algorithm is utilized for classification to detect DDoS attacks. The sigmoid activation function is to find accurate results for prediction in the cloud environment. So thus, the proposed experiment provides effective classification accuracy, performance, and time complexity.
A Effective Encryption and Different Integrity Schemes to Improve the Performance of Cloud Services. 2022 International Conference for Advancement in Technology (ICONAT). :1–5.
.
2022. Recent modern era becomes a multi-user environment. It's hard to store and retrieve data in secure manner at the end user side is a hectic challenge. Difference of Cloud computing compare to Network Computing can be accessed from multiple company servers. Cloud computing makes the users and organization to opt their services. Due to effective growth of the Cloud Technology. Data security, Data Privacy key validation and tracing of user are severe concern. It is hard to trace malicious users who misuse the secrecy. To reduce the rate of misuse in secrecy user revocation is used. Audit Log helps in Maintaining the history of malicious user also helps in maintaining the data integrity in cloud. Cloud Monitoring Metrics helps in the evaluation survey study of different Metrics. In this paper we give an in depth survey about Back-end of cloud services their concerns and the importance of privacy in cloud, Privacy Mechanism in cloud, Ways to Improve the Privacy in cloud, Hazards, Cloud Computing Issues and Challenges we discuss the need of cryptography and a survey of existing cryptographic algorithms. We discuss about the auditing and its classifications with respect to comparative study. In this paper analyzed various encryption schemes and auditing schemes with several existing algorithms which help in the improvement of cloud services.