Biblio
The use of biometrics in security applications may be vulnerable to several challenges of hacking. Thus, the emergence of cancellable biometrics becomes a suitable solution to this problem. This paper presents a one-way cancellable biometric transform that depends on 3D chaotic maps for face and fingerprint encryption. It aims to avoid cloning of original biometrics and allow the templates used by each user in different applications to be variable. The permutations achieved with the chaotic maps guarantee high security of the biometric templates, especially with the 3D implementation of the encryption algorithm. In addition, the paper presents a hardware implementation for this framework. The proposed algorithm also achieves good performance in the presence of low and moderate levels of noise. An experimental version of the proposed cancellable biometric system has been applied on FPGA model. The obtained results achieve a powerful performance of the proposed cancellable biometric system.
In the paper, an intrusion detection system to safeguard computer software is proposed. The detection is based on negative selection algorithm, inspired by the human immunity mechanism. It is composed of two stages, generation of receptors and anomaly detection. Experimental results of the proposed system are presented, analyzed, and concluded.
Privacy preservation is a challenging task with the huge amount of data that are available in social media. The data those are stored in the distributed environment or in cloud environment need to ensure confidentiality to data. In addition, representing the voluminous data is graph will be convenient to perform keyword search. The proposed work initially reads the data corresponding to social media and converts that into a graph. In order to prevent the data from the active attacks Advanced Encryption Standard algorithm is used to perform graph encryption. Later, search operation is done using two algorithms: kNK keyword search algorithm and top k nearest keyword search algorithm. The first scheme is used to fetch all the data corresponding to the keyword. The second scheme is used to fetch the nearest neighbor. This scheme increases the efficiency of the search process. Here shortest path algorithm is used to find the minimum distance. Now, based on the minimum value the results are produced. The proposed algorithm shows high performance for graph generation and searching and moderate performance for graph encryption.
A Cyber Physical System (CPS) is a smart network system with actuators, embedded sensors, and processors to interact with the physical world by guaranteeing the performance and supporting real-time operations of safety critical applications. These systems drive innovation and are a source of competitive advantage in today’s challenging world. By observing the behavior of physical processes and activating actions, CPS can alter its behavior to make the physical environment perform better and more accurately. By definition, CPS basically has two major components including cyber systems and physical processes. Examples of CPS include autonomous transportation systems, robotics systems, medical monitoring, automatic pilot avionics, and smart grids. Advances in CPS will empower scalability, capability, usability, and adaptability, which will go beyond the simple systems of today. At the same time, CPS has also increased cybersecurity risks and attack surfaces. Cyber attackers can harm such systems from multiple sources while hiding their identities. As a result of sophisticated threat matrices, insufficient knowledge about threat patterns, and industrial network automation, CPS has become extremely insecure. Since such infrastructure is networked, attacks can be prompted easily without much human participation from remote locations, thereby making CPS more vulnerable to sophisticated cyber-attacks. In turn, large-scale data centers managing a huge volume of CPS data become vulnerable to cyber-attacks. To secure CPS, the role of security analytics and intelligence is significant. It brings together huge amounts of data to create threat patterns, which can be used to prevent cyber-attacks in a timely fashion. The primary objective of this Special Section in IEEE A CCESS is to collect a complementary and diverse set of articles, which demonstrate up-to-date information and innovative developments in the domain of security analytics and intelligence for CPS.
Instant messaging is an application that is widely used to communicate. Based on the wearesocial.com report, three of the five most used social media platforms are chat or instant messaging. Instant messaging was chosen for communication because it has security features in log in using a One Time Password (OTP) code, end-to-end encryption, and even two-factor authentication. However, instant messaging applications still have a vulnerability to account theft. This account theft occurs when the user loses his cellphone. Account theft can happen when a cellphone is locked or not. As a result of this account theft, thieves can read confidential messages and send fake news on behalf of the victim. In this research, instant messaging application security will be applied using hybrid encryption and two-factor authentication, which are made interrelated. Both methods will be implemented in 2 implementation designs. The implementation design is securing login and securing sending and receiving messages. For login security, QR Code implementation is sent via email. In sending and receiving messages, the message decryption process will be carried out when the user is authenticated using a fingerprint. Hybrid encryption as message security uses RSA 2048 and AES 128. Of the ten attempts to steal accounts that have been conducted, it is shown that the implementation design is proven to reduce the impact of account theft.
Video presentation from Carnegie Melon University "Implementing Cyber Security in DoD Supply Chains," 2020.
As we notice the increasing adoption of Cellular IoT solutions (smart-home, e-health, among others), there are still some security aspects that can be improved as these devices can suffer various types of attacks that can have a high-impact over our daily lives. In order to avoid this, we present a multi-front security solution that consists on a federated cross-layered authentication mechanism, as well as a machine learning platform with anomaly detection techniques for data traffic analysis as a way to study devices' behavior so it can preemptively detect attacks and minimize their impact. In this paper, we also present a proof-of-concept to illustrate the proposed solution and showcase its feasibility, as well as the discussion of future iterations that will occur for this work.
Two-phase I/O is a well-known strategy for implementing collective MPI-IO functions. It redistributes I/O requests among the calling processes into a form that minimizes the file access costs. As modern parallel computers continue to grow into the exascale era, the communication cost of such request redistribution can quickly overwhelm collective I/O performance. This effect has been observed from parallel jobs that run on multiple compute nodes with a high count of MPI processes on each node. To reduce the communication cost, we present a new design for collective I/O by adding an extra communication layer that performs request aggregation among processes within the same compute nodes. This approach can significantly reduce inter-node communication contention when redistributing the I/O requests. We evaluate the performance and compare it with the original two-phase I/O on Cray XC40 parallel computers (Theta and Cori) with Intel KNL and Haswell processors. Using I/O patterns from two large-scale production applications and an I/O benchmark, we show our proposed method effectively reduces the communication cost and hence maintains the scalability for a large number of processes.
A central problem for transition studies is how to accelerate or decelerate them with policy guidance. Incumbent-led transitions with government support can generate substantial public support for deceleration. Civil society organizations (CSOs) lead and formulate public opinion in this type of industrial transition. Analysis of CSO strategy can contribute to a better understanding of transition acceleration and deceleration. Four main elements of political strategy are identified for how CSOs attempt to affect an industrial transition. The transition to connected and autonomous (or automated) vehicles (CAVs) in the United States is used to explore the role of civil society in the acceleration and deceleration of sociotechnical transitions. This is an “incumbent-led transition,” which occurs when large industrial corporations in one or more industries lead a systemic technological change. This type of transition may generate public concerns about risk and uncertainty, which can be expressed and mobilized by civil society organizations (CSOs). In turn, CSOs may also attempt to decelerate the transition process in order to develop better regulation and to change technology design. Based on an analysis of CSO statements in the public sphere and media reports on CAVs in the U.S., the political strategy of CSOs is examined to improve understanding of the role of civil society in incumbent-led transitions. The analysis indicates that the strategy includes four main aspects: articulating an alternative political goal (slower introduction of advanced autonomous vehicles and more rapid introduction of existing driver-assisted technology), engaging multiple targets or venues of action (different government units and the private sector), forming and expanding a broad coalition, and selecting effective tactics of influence (lobbying, media outreach, and research involving public opinion polls).
The development of mobile internet has brought convenience to people, but the openness and diversity of mobile Internet make it face the security threat of communication privacy data disclosure. In this paper, a trusted android device security communication method based on TrustZone is proposed. Firstly, Elliptic Curve Diffie-Hellman (ECDH) key agreement algorithm is used to make both parties negotiate the session key in the Trusted Execution Environment (TEE), and then, we stored the key safely in the TEE. Finally, TEE completes the encryption and decryption of the transmitted data. This paper constructs a secure communication between mobile devices without a trusted third party and analyzes the feasibility of the method from time efficiency and security. The experimental results show that the method can resist malicious application monitoring in the process of data encryption and ensures the security of the session key. Compared with the traditional scheme, it is found that the performance of the scheme is not significantly reduced.
Information security of logistics services. Information security of logistics services is understood as a complex activity aimed at using information and means of its processing in order to increase the level of protection and normal functioning of the object's information environment. At the same time the main recommendations for ensuring information security of logistics processes include: logistics support of processes for ensuring the security of information flows of the enterprise; assessment of the quality and reliability of elements, reliability and efficiency of obtaining information about the state of logistics processes. However, it is possible to assess the level of information security within the organization's controlled part of the supply chain through levels and indicators. In this case, there are four levels and elements of information security of supply chains.
The Android application market will conduct various security analysis on each application to predict its potential harm before put it online. Since almost all the static analysis tools can only detect malicious behaviors in the Java layer, more and more malwares try to avoid static analysis by taking the malicious codes to the Native layer. To provide a solution for the above situation, there's a new research aspect proposed in this paper and defined as Inter-language Static Analysis. As all the involved technologies are introduced, the current research results of them will be captured in this paper, such as static analysis in Java layer, binary analysis in Native layer, Java-Native penetration technology, etc.