Biblio
Most of the authentication protocols assume the existence of a Trusted Third Party (TTP) in the form of a Certificate Authority or as an authentication server. The main objective of this research is to present an autonomous solution where users could store their credentials, without depending on TTPs. For this, the use of an autonomous network is imperative, where users could use their uniqueness in order to identify themselves. We propose the framework “Three Blockchains Identity Management with Elliptic Curve Cryptography (3BI-ECC)”. Our proposed framework is a decentralize identity management system where users' identities are self-generated.
Voice user interfaces can offer intuitive interaction with our devices, but the usability and audio quality could be further improved if multiple devices could collaborate to provide a distributed voice user interface. To ensure that users' voices are not shared with unauthorized devices, it is however necessary to design an access management system that adapts to the users' needs. Prior work has demonstrated that a combination of audio fingerprinting and fuzzy cryptography yields a robust pairing of devices without sharing the information that they record. However, the robustness of these systems is partially based on the extensive duration of the recordings that are required to obtain the fingerprint. This paper analyzes methods for robust generation of acoustic fingerprints in short periods of time to enable the responsive pairing of devices according to changes in the acoustic scenery and can be integrated into other typical speech processing tools.
The rapid deployment of digital systems into all aspects of daily life requires embedding social constructs into the digital world. Because of the complexity of these systems, there is a need for technical support to understand their actions. Social concepts, such as explainability, accountability, and responsibility rely on a notion of actual causality. Encapsulated in the Halpern and Pearl’s (HP) definition, actual causality conveniently integrates into the socio-technical world if operationalized in concrete applications. To the best of our knowledge, theories of actual causality such as the HP definition are either applied in correspondence with domain-specific concepts (e.g., a lineage of a database query) or demonstrated using straightforward philosophical examples. On the other hand, there is a lack of explicit automated actual causality theories and operationalizations for helping understand the actions of systems. Therefore, this paper proposes a unifying framework and an interactive platform (Actual Causality Canvas) to address the problem of operationalizing actual causality for different domains and purposes. We apply this framework in such areas as aircraft accidents, unmanned aerial vehicles, and artificial intelligence (AI) systems for purposes of forensic investigation, fault diagnosis, and explainable AI. We show that with minimal effort, using our general-purpose interactive platform, actual causality reasoning can be integrated into these domains.
Machine learning techniques help to understand underlying patterns in datasets to develop defense mechanisms against cyber attacks. Multilayer Perceptron (MLP) technique is a machine learning technique used in detecting attack vs. benign data. However, it is difficult to construct any effective model when there are imbalances in the dataset that prevent proper classification of attack samples in data. In this research, we use UGR'16 dataset to conduct data wrangling initially. This technique helps to prepare a test set from the original dataset to train the neural network model effectively. We experimented with a series of inputs of varying sizes (i.e. 10000, 50000, 1 million) to observe the performance of the MLP neural network model with distribution of features over accuracy. Later, we use Generative Adversarial Network (GAN) model that produces samples of different attack labels (e.g. blacklist, anomaly spam, ssh scan) for balancing the dataset. These samples are generated based on data from the UGR'16 dataset. Further experiments with MLP neural network model shows that a balanced attack sample dataset, made possible with GAN, produces more accurate results than an imbalanced one.
With the development of mobile internet technology, GPS technology and social software have been widely used in people's lives. The problem of big data privacy protection related to location trajectory is becoming more and more serious. The traditional location trajectory privacy protection method requires certain background knowledge and it is difficult to adapt to massive mass. Privacy protection of data. differential privacy protection technology protects privacy by attacking data by randomly perturbing raw data. The method used in this paper is to first sample the position trajectory, form the irregular polygons of the high-frequency access points in the sampling points and position data, calculate the center of gravity of the polygon, and then use the differential privacy protection algorithm to add noise to the center of gravity of the polygon to form a new one. The center of gravity, and the new center of gravity are connected to form a new trajectory. The purpose of protecting the position trajectory is well achieved. It is proved that the differential privacy protection algorithm can effectively protect the position trajectory by adding noise.
Aiming at the problem that the traditional intrusion detection method can not effectively deal with the massive and high-dimensional network traffic data of industrial control system (ICS), an ICS intrusion detection strategy based on bidirectional generative adversarial network (BiGAN) is proposed in this paper. In order to improve the applicability of BiGAN model in ICS intrusion detection, the optimal model was obtained through the single variable principle and cross-validation. On this basis, the supervised control and data acquisition (SCADA) standard data set is used for comparative experiments to verify the performance of the optimized model on ICS intrusion detection. The results show that the ICS intrusion detection method based on optimized BiGAN has higher accuracy and shorter detection time than other methods.
Modern industrial control systems (ICS) act as victims of cyber attacks more often in last years. These cyber attacks often can not be detected by classical information security methods. Moreover, the consequences of cyber attack's impact can be catastrophic. Since cyber attacks leads to appearance of anomalies in the ICS and technological equipment controlled by it, the task of intrusion detection for ICS can be reformulated as the task of industrial process anomaly detection. This paper considers the applicability of generative adversarial networks (GANs) in the field of industrial processes anomaly detection. Existing approaches for GANs usage in the field of information security (such as anomaly detection in network traffic) were described. It is proposed to use the BiGAN architecture in order to detect anomalies in the industrial processes. The proposed approach has been tested on Secure Water Treatment Dataset (SWaT). The obtained results indicate the prospects of using the examined method in practice.
Ransomware have observed a steady growth over the years with several concerning trends that indicate efficient, targeted attacks against organizations and individuals alike. These opportunistic attackers indiscriminately target both public and private sector entities to maximize gain. In this article, we highlight the criticality of key management in ransomware's cryptosystem in order to facilitate building effective solutions against this threat. We introduce the ransomware kill chain to elucidate the path our adversaries must take to attain their malicious objective. We examine current solutions presented against ransomware in light of this kill chain and specify which constraints on ransomware are being violated by the existing solutions. Finally, we present the notion of memory attacks against ransomware's key management and present our initial experiments with dynamically extracting decryption keys from real-world ransomware. Results of our preliminary research are promising and the extracted keys were successfully deployed in subsequent data decryption.
It is necessary to improve the safety of the underwater acoustic sensor networks (UASNs) since it is mostly used in the military industry. Specific emitter identification is the process of identifying different transmitters based on the radio frequency fingerprint extracted from the received signal. The sonar transmitter is a typical low-frequency radiation source and is an important part of the UASNs. Class D power amplifier, a typical nonlinear amplifier, is usually used in sonar transmitters. The inherent nonlinearity of power amplifiers provides fingerprint features that can be distinguished without transmitters for specific emitter recognition. First, the nonlinearity of the sonar transmitter is studied in-depth, and the nonlinearity of the power amplifier is modeled and its nonlinearity characteristics are analyzed. After obtaining the nonlinear model of an amplifier, a similar amplifier in practical application is obtained by changing its model parameters as the research object. The output signals are collected by giving the same input of different models, and, then, the output signals are extracted and classified. In this paper, the memory polynomial model is used to model the amplifier. The power spectrum features of the output signals are extracted as fingerprint features. Then, the dimensionality of the high-dimensional features is reduced. Finally, the classifier is used to recognize the amplifier. The experimental results show that the individual sonar transmitter can be well identified by using the nonlinear characteristics of the signal. By this way, this method can enhance the communication safety of the UASNs.
The biometric system of access to information resources has been developed. The software and hardware complex are designed to protect information resources and personal data from unauthorized access using the principle of user authentication by fingerprints. In the developed complex, the traditional input of login and password was replaced by applying a finger to the fingerprint scanner. The system automatically recognizes the fingerprint and provides access to the information resource, provides encryption of personal data and automation of the authorization process on the web resource. The web application was implemented using the Bootstrap framework, the 000webhost web server, the phpMyAdmin database server, the PHP scripting language, the HTML hypertext markup language, along with cascading style sheets and embedded scripts (JavaScript), which created a full-fledged web-site and Google Chrome extension with the ability to integrate it into other systems. The structural schematic diagram was performed. The design of the device is offered. The algorithm of the program operation and the program of the device operation in the C language are developed.
Cybersecurity community is slowly leveraging Machine Learning (ML) to combat ever evolving threats. One of the biggest drivers for successful adoption of these models is how well domain experts and users are able to understand and trust their functionality. As these black-box models are being employed to make important predictions, the demand for transparency and explainability is increasing from the stakeholders.Explanations supporting the output of ML models are crucial in cyber security, where experts require far more information from the model than a simple binary output for their analysis. Recent approaches in the literature have focused on three different areas: (a) creating and improving explainability methods which help users better understand the internal workings of ML models and their outputs; (b) attacks on interpreters in white box setting; (c) defining the exact properties and metrics of the explanations generated by models. However, they have not covered, the security properties and threat models relevant to cybersecurity domain, and attacks on explainable models in black box settings.In this paper, we bridge this gap by proposing a taxonomy for Explainable Artificial Intelligence (XAI) methods, covering various security properties and threat models relevant to cyber security domain. We design a novel black box attack for analyzing the consistency, correctness and confidence security properties of gradient based XAI methods. We validate our proposed system on 3 security-relevant data-sets and models, and demonstrate that the method achieves attacker's goal of misleading both the classifier and explanation report and, only explainability method without affecting the classifier output. Our evaluation of the proposed approach shows promising results and can help in designing secure and robust XAI methods.
In Machine Learning, White Box Adversarial Attacks rely on knowing underlying knowledge about the model attributes. This works focuses on discovering to distrinct pieces of model information: the underlying architecture and primary training dataset. With the process in this paper, a structured set of input probes and the output of the model become the training data for a deep classifier. Two subdomains in Machine Learning are explored - image based classifiers and text transformers with GPT-2. With image classification, the focus is on exploring commonly deployed architectures and datasets available in popular public libraries. Using a single transformer architecture with multiple levels of parameters, text generation is explored by fine tuning off different datasets. Each dataset explored in image and text are distinguishable from one another. Diversity in text transformer outputs implies further research is needed to successfully classify architecture attribution in text domain.
The implication of Cyber-Physical Systems (CPS) in critical infrastructures (e.g., smart grids, water distribution networks, etc.) has introduced new security issues and vulnerabilities to those systems. In this paper, we demonstrate that black-box system identification using Support Vector Regression (SVR) can be used efficiently to build a model of a given industrial system even when this system is protected with a watermark-based detector. First, we briefly describe the Tennessee Eastman Process used in this study. Then, we present the principal of detection scheme and the theory behind SVR. Finally, we design an efficient black-box SVR algorithm for the Tennessee Eastman Process. Extensive simulations prove the efficiency of our proposed algorithm.