Biblio
Mobile Ad-hoc Network (MANET) consists of different configurations, where it deals with the dynamic nature of its creation and also it is a self-configurable type of a network. The primary task in this type of networks is to develop a mechanism for routing that gives a high QoS parameter because of the nature of ad-hoc network. The Ad-hoc-on-Demand Distance Vector (AODV) used here is the on-demand routing mechanism for the computation of the trust. The proposed approach uses the Artificial neural network (ANN) and the Support Vector Machine (SVM) for the discovery of the black hole attacks in the network. The results are carried out between the black hole AODV and the security mechanism provided by us as the Secure AODV (SAODV). The results were tested on different number of nodes, at last, it has been experimented for 100 nodes which provide an improvement in energy consumption of 54.72%, the throughput is 88.68kbps, packet delivery ratio is 92.91% and the E to E delay is of about 37.27ms.
Blockchain technology is the cornerstone of digital trust and systems' decentralization. The necessity of eliminating trust in computing systems has triggered researchers to investigate the applicability of Blockchain to decentralize the conventional security models. Specifically, researchers continuously aim at minimizing trust in the well-known Public Key Infrastructure (PKI) model which currently requires a trusted Certificate Authority (CA) to sign digital certificates. Recently, the Automated Certificate Management Environment (ACME) was standardized as a certificate issuance automation protocol. It minimizes the human interaction by enabling certificates to be automatically requested, verified, and installed on servers. ACME only solved the automation issue, but the trust concerns remain as a trusted CA is required. In this paper we propose decentralizing the ACME protocol by using the Blockchain technology to enhance the current trust issues of the existing PKI model and to eliminate the need for a trusted CA. The system was implemented and tested on Ethereum Blockchain, and the results showed that the system is feasible in terms of cost, speed, and applicability on a wide range of devices including Internet of Things (IoT) devices.
File timestamps do not receive much attention from information security specialists and computer forensic scientists. It is believed that timestamps are extremely easy to fake, and the system time of a computer can be changed. However, operating system for synchronizing processes and working with file objects needs accurate time readings. The authors estimate that several million timestamps can be stored on the logical partition of a hard disk with the NTFS. The MFT stores four timestamps for each file object in \$STANDARDİNFORMATION and \$FILE\_NAME attributes. Furthermore, each directory in the İNDEX\_ROOT or İNDEX\_ALLOCATION attributes contains four more timestamps for each file within it. File timestamps are set and changed as a result of file operations. At the same time, some file operations differently affect changes in timestamps. This article presents the results of the tool-based observation over the creation and update of timestamps in the MFT resulting from the basic file operations. Analysis of the results is of interest with regard to computer forensic science.
With the traffic growth with different deterministic transport and isolation requirements in radio access networks (RAN), Flexible Ethernet (FlexE) over wavelength division multiplexing (WDM) network is as a candidate for next generation RAN transport, and the security issue in RAN transport is much more obvious, especially the eavesdropping attack in physical layer. Therefore, in this work, we put forward a cross-layer design for security enhancement through leveraging universal Hashing based FlexE data block permutation and multiple parallel fibre transmission for anti-eavesdropping in end-to-end FlexE over WDM network. Different levels of attack ability are considered for measuring the impact on network security and resource utilization. Furthermore, the trade-off problem between efficient resource utilization and guarantee of higher level of security is also explored. Numerical results demonstrate the cross-layer defense strategies are effective to struggle against intruders with different levels of attack ability.
The Case Studies in Cyber Supply Chain Risk Management series engaged with several companies that are leaders in managing cyber supply chain risk. These case studies build on the Best Practices in Cyber Supply Chain Risk Management case studies originally published in 2015 with the goals of covering new organizations in new industries and bringing to light any changes in cyber supply chain risk management practices. This case study is for the Mayo Clinic.
The Case Studies in Cyber Supply Chain Risk Management series engaged with several companies that are mature in managing cyber supply chain risk. These case studies build on the Best Practices in Cyber Supply Chain Risk Management case studies originally published in 2015 with the goals of covering new organizations in new industries and bringing to light any changes in cyber supply chain risk management practices.
The Case Studies in Cyber Supply Chain Risk Management series engaged with several companies that are mature in managing cyber supply chain risk. These case studies build on the Best Practices in Cyber Supply Chain Risk Management case studies originally published in 2015 with the goals of covering new organizations in new industries and bringing to light any changes in cyber supply chain risk management practices.
In the context of insiders, preventive security measures have a high likelihood of failing because insiders ought to have sufficient privileges to perform their jobs. Instead, in this paper, we propose to treat the insider threat by a detective measure that holds an insider accountable in case of violations. However, to enable accountability, we need to create causal models that support reasoning about the causality of a violation. Current security models (e.g., attack trees) do not allow that. Still, they are a useful source for creating causal models. In this paper, we discuss the value added by causal models in the security context. Then, we capture the interaction between attack trees and causal models by proposing an automated approach to extract the latter from the former. Our approach considers insider-specific attack classes such as collusion attacks and causal-model-specific properties like preemption relations. We present an evaluation of the resulting causal models’ validity and effectiveness, in addition to the efficiency of the extraction process.
This study examines the results of field experiments of transactive energy systems (TESs) in order to identify challenges that occur with the integration of TESs with existing software, hardware, appliances, and customer practices. Three types of challenges, and potential responses and solutions, are identified for the implementation phase of TESs: systematic risk to existing building functions, lack of readiness of users and connected systems, and lack of competitiveness with existing demand-management systems and products.
In image forensics, to determine whether the image is impurely transformed, it extracts and examines the features included in the suspicious image. In general, the features extracted for the detection of forgery images are based on numerical values, so it is somewhat unreasonable to use in the CNN structure for image classification. In this paper, the extraction method of a feature vector is using a least-squares solution. Treat a suspicious image like a matrix and its solution to be coefficients as the feature vector. Get two solutions from two images of the original and its median filter residual (MFR). Subsequently, the two features were formed into a visualized pattern and then fed into CNN deep learning to classify the various transformed images. A new structure of the CNN net layer was also designed by hybrid with the inception module and the residual block to classify visualized feature vector patterns. The performance of the proposed image forensics detection (IFD) scheme was measured with the seven transformed types of image: average filtered (window size: 3 × 3), gaussian filtered (window size: 3 × 3), JPEG compressed (quality factor: 90, 70), median filtered (window size: 3 × 3, 5 × 5), and unaltered. The visualized patterns are fed into the image input layer of the designed CNN hybrid model. Throughout the experiment, the accuracy of median filtering detection was 98% over. Also, the area under the curve (AUC) by sensitivity (TP: true positive rate) and 1-specificity (FP: false positive rate) results of the proposed IFD scheme approached to `1' on the designed CNN hybrid model. Experimental results show high efficiency and performance to classify the various transformed images. Therefore, the grade evaluation of the proposed scheme is “Excellent (A)”.
Power system security assessment and enhancement in grids with high penetration of renewables is critical for pragmatic power system planning. Static Security Assessment (SSA) is a fast response tool to assess system stability margins following considerable contingencies assuming post fault system reaches a steady state. This paper presents a contingency ranking methodology using static security indices to rank credible contingencies considering severity. A Modified IEEE 9 bus system integrating renewables was used to test the approach. The static security indices used independently provides accurate results in identifying severe contingencies but further assessment is needed to provide an accurate picture of static security assessment in an increased time frame of the steady state. The indices driven for static security assessment could accurately capture and rank contingencies with renewable sources but due to intermittency of the renewable source various contingency ranking lists are generated. This implies that using indices in future grids without consideration on intermittent nature of renewables will make it difficult for the grid operator to identify severe contingencies and assist the power system operator to make operational decisions. This makes it necessary to integrate the behaviour of renewables in security indices for practical application in real time security assessment.
In January 2017 encrypted Internet traffic surpassed non-encrypted traffic. Although encryption increases security, it also masks intrusions and attacks by blocking the access to packet contents and traffic features, therefore making data analysis unfeasible. In spite of the strong effect of encryption, its impact has been scarcely investigated in the field. In this paper we study how encryption affects flow feature spaces and machine learning-based attack detection. We propose a new cross-layer feature vector that simultaneously represents traffic at three different levels: application, conversation, and endpoint behavior. We analyze its behavior under TLS and IPSec encryption and evaluate the efficacy with recent network traffic datasets and by using Random Forests classifiers. The cross-layer multi-key approach shows excellent attack detection in spite of TLS encryption. When IPsec is applied, the reduced variant obtains satisfactory detection for botnets, yet considerable performance drops for other types of attacks. The high complexity of network traffic is unfeasible for monolithic data analysis solutions, therefore requiring cross-layer analysis for which the multi-key vector becomes a powerful profiling core.
Deep neural network (DNN) has demonstrated its success in multiple domains. However, DNN models are inherently vulnerable to adversarial examples, which are generated by adding adversarial perturbations to benign inputs to fool the DNN model to misclassify. In this paper, we present a cross-layer strategic ensemble framework and a suite of robust defense algorithms, which are attack-independent, and capable of auto-repairing and auto-verifying the target model being attacked. Our strategic ensemble approach makes three original contributions. First, we employ input-transformation diversity to design the input-layer strategic transformation ensemble algorithms. Second, we utilize model-disagreement diversity to develop the output-layer strategic model ensemble algorithms. Finally, we create an input-output cross-layer strategic ensemble defense that strengthens the defensibility by combining diverse input transformation based model ensembles with diverse output verification model ensembles. Evaluated over 10 attacks on ImageNet dataset, we show that our strategic ensemble defense algorithms can achieve high defense success rates and are more robust with high attack prevention success rates and low benign false negative rates, compared to existing representative defenses.