Biblio
We consider a setup in which the channel from Alice to Bob is less noisy than the channel from Eve to Bob. We show that there exist encoding and decoding which accomplish error correction and authentication simultaneously; that is, Bob is able to correctly decode a message coming from Alice and reject a message coming from Eve with high probability. The system does not require any secret key shared between Alice and Bob, provides information theoretic security, and can safely be composed with other protocols in an arbitrary context.
With the rapid increase in the use of mobile devices in people's daily lives, mobile data traffic is exploding in recent years. In the edge computing environment where edge servers are deployed around mobile users, caching popular data on edge servers can ensure mobile users' fast access to those data and reduce the data traffic between mobile users and the centralized cloud. Existing studies consider the data cache problem with a focus on the reduction of network delay and the improvement of mobile devices' energy efficiency. In this paper, we attack the data caching problem in the edge computing environment from the service providers' perspective, who would like to maximize their venues of caching their data. This problem is complicated because data caching produces benefits at a cost and there usually is a trade-off in-between. In this paper, we formulate the data caching problem as an integer programming problem, and maximizes the revenue of the service provider while satisfying a constraint for data access latency. Extensive experiments are conducted on a real-world dataset that contains the locations of edge servers and mobile users, and the results reveal that our approach significantly outperform the baseline approaches.
Software Defined Networking (SDN) is very popular due to the benefits it provides such as scalability, flexibility, monitoring, and ease of innovation. However, it needs to be properly protected from security threats. One major attack that plagues the SDN network is the distributed denial-of-service (DDoS) attack. There are several approaches to prevent the DDoS attack in an SDN network. We have evaluated a few machine learning techniques, i.e., J48, Random Forest (RF), Support Vector Machine (SVM), and K-Nearest Neighbors (K-NN), to detect and block the DDoS attack in an SDN network. The evaluation process involved training and selecting the best model for the proposed network and applying it in a mitigation and prevention script to detect and mitigate attacks. The results showed that J48 performs better than the other evaluated algorithms, especially in terms of training and testing time.
Software rejuvenation has been proposed as a strategy to protect cyber-physical systems (CSPs) against unanticipated and undetectable cyber attacks. The basic idea is to refresh the system periodically with a secure and trusted copy of the online software so as to eliminate all effects of malicious modifications to the run-time code and data. This paper considers software rejuvenation design from a control-theoretic perspective. Invariant sets for the Lyapunov function for the safety controller are used to derive bounds on the time that the CPS can operate in mission control mode before the software must be refreshed. With these results it can be guaranteed that the CPS will remain safe under cyber attacks against the run-time system. The approach is illustrated using simulation of the nonlinear dynamics of a quadrotor system. The concluding section discusses directions for further research.
This paper begins with an introduction to security metrics, describing the need for security metrics, followed by a discussion of the nature of security metrics, including the challenges found with some security metrics used in the past. The paper then discusses what makes a good security metric and proposes a rigorous step-by-step method that can be applied to design good security metrics, and to test existing security metrics to see if they are good metrics. Application examples are included to illustrate the method.
Network Function Virtualization (NFV) is a recent concept where virtualization enables the shift from network functions (e.g., routers, switches, load-balancers, proxies) on specialized hardware appliances to software images running on all-purpose, high-volume servers. The resource allocation problem in the NFV environment has received considerable attention in the past years. However, little attention was paid to the security aspects of the problem in spite of the increasing number of vulnerabilities faced by cloud-based applications. Securing the services is an urgent need to completely benefit from the advantages offered by NFV. In this paper, we show how a network service request, composed of a set of service function chains (SFC) should be modified and enriched to take into consideration the security requirements of the supported service. We examine the well-known security best practices and propose a two-step algorithm that extends the initial SFC requests to a more complex chaining model that includes the security requirements of the service.
While the number of mobile applications are rapidly growing, these applications are often coming with numerous security flaws due to the lack of appropriate coding practices. Security issues must be addressed earlier in the development lifecycle rather than fixing them after the attacks because the damage might already be extensive. Early elimination of possible security vulnerabilities will help us increase the security of our software and mitigate or reduce the potential damages through data losses or service disruptions caused by malicious attacks. However, many software developers lack necessary security knowledge and skills required at the development stage, and Secure Mobile Software Development (SMSD) is not yet well represented in academia and industry. In this paper, we present a static analysis-based security analysis approach through design and implementation of a plugin for Android Development Studio, namely DroidPatrol. The proposed plugins can support developers by providing list of potential vulnerabilities early.
Given a code used to send a message to two receivers through a degraded discrete memoryless broadcast channel (DM-BC), the sender wishes to alter the codewords to achieve the following goals: (i) the original broadcast communication continues to take place, possibly at the expense of a tolerable increase of the decoding error probability; and (ii) an additional covert message can be transmitted to the stronger receiver such that the weaker receiver cannot detect the existence of this message. The main results are: (a) feasibility of covert communications is proven by using a random coding argument for general DM-BCs; and (b) necessary conditions for establishing covert communications are described and an impossibility (converse) result is presented for a particular class of DM-BCs. Together, these results characterize the asymptotic fundamental limits of covert communications for this particular class of DM-BCs within an arbitrarily small gap.
How to evaluate software reliability based on historical data of embedded software projects is one of the problems we have to face in practical engineering. Therefore, we establish a software reliability evaluation model based on code metrics. This evaluation technique requires the aggregation of software code metrics into project metrics. Statistical value methods, metric distribution methods, and econometric methods are commonly-used aggregation methods. What are the differences between these methods in the software reliability evaluation process, and which methods can improve the accuracy of the reliability assessment model we have established are our concerns. In view of these concerns, we conduct an empirical study on the application of software code metric aggregation methods based on actual projects. We find the distribution of code metrics for the projects under study. Using these distribution laws, we optimize the aggregation method of code metrics and improve the accuracy of the software reliability evaluation model.
We propose an approach for allowing data owners to trade their data in digital data market scenarios, while keeping control over them. Our solution is based on a combination of selective encryption and smart contracts deployed on a blockchain, and ensures that only authorized users who paid an agreed amount can access a data item. We propose a safe interaction protocol for regulating the interplay between a data owner and subjects wishing to purchase (a subset of) her data, and an audit process for counteracting possible misbehaviors by any of the interacting parties. Our solution aims to make a step towards the realization of data market platforms where owners can benefit from trading their data while maintaining control.