Biblio

Found 19604 results

2020-09-04
Liang, Jiaqi, Li, Linjing, Chen, Weiyun, Zeng, Daniel.  2019.  Targeted Addresses Identification for Bitcoin with Network Representation Learning. 2019 IEEE International Conference on Intelligence and Security Informatics (ISI). :158—160.

The anonymity and decentralization of Bitcoin make it widely accepted in illegal transactions, such as money laundering, drug and weapon trafficking, gambling, to name a few, which has already caused significant security risk all around the world. The obvious de-anonymity approach that matches transaction addresses and users is not possible in practice due to limited annotated data set. In this paper, we divide addresses into four types, exchange, gambling, service, and general, and propose targeted addresses identification algorithms with high fault tolerance which may be employed in a wide range of applications. We use network representation learning to extract features and train imbalanced multi-classifiers. Experimental results validated the effectiveness of the proposed method.

2020-11-04
Khalid, F., Hanif, M. A., Rehman, S., Ahmed, R., Shafique, M..  2019.  TrISec: Training Data-Unaware Imperceptible Security Attacks on Deep Neural Networks. 2019 IEEE 25th International Symposium on On-Line Testing and Robust System Design (IOLTS). :188—193.

Most of the data manipulation attacks on deep neural networks (DNNs) during the training stage introduce a perceptible noise that can be catered by preprocessing during inference, or can be identified during the validation phase. There-fore, data poisoning attacks during inference (e.g., adversarial attacks) are becoming more popular. However, many of them do not consider the imperceptibility factor in their optimization algorithms, and can be detected by correlation and structural similarity analysis, or noticeable (e.g., by humans) in multi-level security system. Moreover, majority of the inference attack rely on some knowledge about the training dataset. In this paper, we propose a novel methodology which automatically generates imperceptible attack images by using the back-propagation algorithm on pre-trained DNNs, without requiring any information about the training dataset (i.e., completely training data-unaware). We present a case study on traffic sign detection using the VGGNet trained on the German Traffic Sign Recognition Benchmarks dataset in an autonomous driving use case. Our results demonstrate that the generated attack images successfully perform misclassification while remaining imperceptible in both “subjective” and “objective” quality tests.

2020-07-10
Nahmias, Daniel, Cohen, Aviad, Nissim, Nir, Elovici, Yuval.  2019.  TrustSign: Trusted Malware Signature Generation in Private Clouds Using Deep Feature Transfer Learning. 2019 International Joint Conference on Neural Networks (IJCNN). :1—8.

This paper presents TrustSign, a novel, trusted automatic malware signature generation method based on high-level deep features transferred from a VGG-19 neural network model pre-trained on the ImageNet dataset. While traditional automatic malware signature generation techniques rely on static or dynamic analysis of the malware's executable, our method overcomes the limitations associated with these techniques by producing signatures based on the presence of the malicious process in the volatile memory. Signatures generated using TrustSign well represent the real malware behavior during runtime. By leveraging the cloud's virtualization technology, TrustSign analyzes the malicious process in a trusted manner, since the malware is unaware and cannot interfere with the inspection procedure. Additionally, by removing the dependency on the malware's executable, our method is capable of signing fileless malware. Thus, we focus our research on in-browser cryptojacking attacks, which current antivirus solutions have difficulty to detect. However, TrustSign is not limited to cryptojacking attacks, as our evaluation included various ransomware samples. TrustSign's signature generation process does not require feature engineering or any additional model training, and it is done in a completely unsupervised manner, obviating the need for a human expert. Therefore, our method has the advantage of dramatically reducing signature generation and distribution time. The results of our experimental evaluation demonstrate TrustSign's ability to generate signatures invariant to the process state over time. By using the signatures generated by TrustSign as input for various supervised classifiers, we achieved 99.5% classification accuracy.

2019-09-25
Abdul Rahman.  2019.  Tricking attackers through the art of deception. Help Net Security.

The purpose of using deception technology in cybersecurity is to misdirect or lure attackers away from valuable technology assets once they have successfully infiltrated a network, using traps or decoys. Deception technology can also be used to further learn about the motives and tactics of attackers. Several components are required for the effective performance of deception. 

2019-09-26
Abdul Rahman.  2019.  Tricking attackers through the art of deception. Help Net Security.

In cybersecurity, deception is redundant if it cannot misdirect, confuse, and lure attackers into traps and dead-ends. It is the art of tricking attackers into overextending and exposing themselves. To deceive attackers, an organization’s security team must see things from the adversary’s perspective.

2019-09-25
Carolyn Crandall.  2019.  You’ve Been Deceived about Deception Technology. Cyber Defense Magazine.

There are three misconceptions about deception technology in regard to its value, complexity, and application. Deception technology is valuable in that it provides accurate detection of attacks. Deceptions are organized, deployed, and managed by modem deception technology through the use of machine learning. Different Organizations of all sizes and types can apply deception in their cybersecurity strategies.

2020-01-28
Zizzo, Giulio, Hankin, Chris, Maffeis, Sergio, Jones, Kevin.  2019.  Adversarial Machine Learning Beyond the Image Domain. Proceedings of the 56th Annual Design Automation Conference 2019. :1–4.
Machine learning systems have had enormous success in a wide range of fields from computer vision, natural language processing, and anomaly detection. However, such systems are vulnerable to attackers who can cause deliberate misclassification by introducing small perturbations. With machine learning systems being proposed for cyber attack detection such attackers are cause for serious concern. Despite this the vast majority of adversarial machine learning security research is focused on the image domain. This work gives a brief overview of adversarial machine learning and machine learning used in cyber attack detection and suggests key differences between the traditional image domain of adversarial machine learning and the cyber domain. Finally we show an adversarial machine learning attack on an industrial control system.
2020-07-03
Kakadiya, Rutvik, Lemos, Reuel, Mangalan, Sebin, Pillai, Meghna, Nikam, Sneha.  2019.  AI Based Automatic Robbery/Theft Detection using Smart Surveillance in Banks. 2019 3rd International conference on Electronics, Communication and Aerospace Technology (ICECA). :201—204.

Deep learning is the segment of artificial intelligence which is involved with imitating the learning approach that human beings utilize to get some different types of knowledge. Analyzing videos, a part of deep learning is one of the most basic problems of computer vision and multi-media content analysis for at least 20 years. The job is very challenging as the video contains a lot of information with large differences and difficulties. Human supervision is still required in all surveillance systems. New advancement in computer vision which are observed as an important trend in video surveillance leads to dramatic efficiency gains. We propose a CCTV based theft detection along with tracking of thieves. We use image processing to detect theft and motion of thieves in CCTV footage, without the use of sensors. This system concentrates on object detection. The security personnel can be notified about the suspicious individual committing burglary using Real-time analysis of the movement of any human from CCTV footage and thus gives a chance to avert the same.

2020-02-17
Letychevskyi, Oleksandr, Peschanenko, Volodymyr, Radchenko, Viktor, Hryniuk, Yaroslav, Yakovlev, Viktor.  2019.  Algebraic Patterns of Vulnerabilities in Binary Code. 2019 10th International Conference on Dependable Systems, Services and Technologies (DESSERT). :70–73.
This paper presents an algebraic approach for formalizing and detecting vulnerabilities in binary code. It uses behaviour algebra equations for creating patterns of vulnerabilities and algebraic matching methods for vulnerability detection. Algebraic matching is based on symbolic modelling. This paper considers a known vulnerability, buffer overflow, as an example to demonstrate an algebraic approach for pattern creation.
2020-03-02
Lastinec, Jan, Keszeli, Mario.  2019.  Analysis of Realistic Attack Scenarios in Vehicle Ad-Hoc Networks. 2019 7th International Symposium on Digital Forensics and Security (ISDFS). :1–6.

The pace of technological development in automotive and transportation has been accelerating rapidly in recent years. Automation of driver assistance systems, autonomous driving, increasing vehicle connectivity and emerging inter-vehicular communication (V2V) are among the most disruptive innovations, the latter of which also raises numerous unprecedented security concerns. This paper is focused on the security of V2V communication in vehicle ad-hoc networks (VANET) with the main goal of identifying realistic attack scenarios and evaluating their impact, as well as possible security countermeasures to thwart the attacks. The evaluation has been done in OMNeT++ simulation environment and the results indicate that common attacks, such as replay attack or message falsification, can be eliminated by utilizing digital signatures and message validation. However, detection and mitigation of advanced attacks such as Sybil attack requires more complex approach. The paper also presents a simple detection method of Sybil nodes based on measuring the signal strength of received messages and maintaining reputation of sending nodes. The evaluation results suggest that the presented method is able to detect Sybil nodes in VANET and contributes to the improvement of traffic flow.

2020-04-24
Serras, Paula, Ibarra-Berastegi, Gabriel, Saénz, Jon, Ulazia, Alain, Esnaola, Ganix.  2019.  Analysis of Wells-type turbines’ operational parameters during winter of 2014 at Mutriku wave farm. OCEANS 2019 – Marseille. :1—5.

Mutriku wave farm is the first commercial plant all around the world. Since July 2011 it has been continuously selling electricity to the grid. It operates with the OWC technology and has 14 operating Wells-type turbines. In the plant there is a SCADA data recording system that collects the most important parameters of the turbines; among them, the pressure in the inlet chamber, the position of the security valve (from fully open to fully closed) and the generated power in the last 5 minutes. There is also an electricity meter which provides information about the amount of electric energy sold to the grid. The 2014 winter (January, February and March), and especially the first fortnight of February, was a stormy winter with rough sea state conditions. This was reflected both in the performance of the turbines (high pressure values, up to 9234.2 Pa; low opening degrees of the security valve, down to 49.4°; and high power generation of about 7681.6 W, all these data being average values) and in the calculated capacity factor (CF = 0.265 in winter and CF = 0.294 in February 2014). This capacity factor is a good tool for the comparison of different WEC technologies or different locations and shows an important seasonal behavior.

2020-03-16
Koning, Ralph, Polevoy, Gleb, Meijer, Lydia, de Laat, Cees, Grosso, Paola.  2019.  Approaches for Collaborative Security Defences in Multi Network Environments. 2019 6th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/ 2019 5th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom). :113–123.
Resolving distributed attacks benefits from collaboration between networks. We present three approaches for the same multi-domain defensive action that can be applied in such an alliance: 1) Counteract Everywhere, 2) Minimize Countermeasures, and 3) Minimize Propagation. First, we provide a formula to compute efficiency of a defense; then we use this formula to compute the efficiency of the approaches under various circumstances. Finally, we discuss how task execution order and timing influence defense efficiency. Our results show that the Minimize Propagation approach is the most efficient method when defending against the chosen attack.
2019-11-12
Mahale, Anusha, B.S., Kariyappa.  2019.  Architecture Analysis and Verification of I3C Protocol. 2019 3rd International Conference on Electronics, Communication and Aerospace Technology (ICECA). :930-935.

In VLSI industry the design cycle is categorized into Front End Design and Back End Design. Front End Design flow is from Specifications to functional verification of RTL design. Back End Design is from logic synthesis to fabrication of chip. Handheld devices like Mobile SOC's is an amalgamation of many components like GPU, camera, sensor, display etc. on one single chip. In order to integrate these components protocols are needed. One such protocol in the emerging trend is I3C protocol. I3C is abbreviated as Improved Inter Integrated Circuit developed by Mobile Industry Processor Interface (MIPI) alliance. Most probably used for the interconnection of sensors in Mobile SOC's. The main motivation of adapting the standard is for the increase speed and low pin count in most of the hardware chips. The bus protocol is backward compatible with I2C devices. The paper includes detailed study I3C bus protocol and developing verification environment for the protocol. The test bench environment is written and verified using system Verilog and UVM. The Universal Verification Methodology (UVM) is base class library built using System Verilog which provides the fundamental blocks needed to quickly develop reusable and well-constructed verification components and test environments. The Functional Coverage of around 93.55 % and Code Coverage of around 98.89 % is achieved by verification closure.

2020-11-09
Li, H., Patnaik, S., Sengupta, A., Yang, H., Knechtel, J., Yu, B., Young, E. F. Y., Sinanoglu, O..  2019.  Attacking Split Manufacturing from a Deep Learning Perspective. 2019 56th ACM/IEEE Design Automation Conference (DAC). :1–6.
The notion of integrated circuit split manufacturing which delegates the front-end-of-line (FEOL) and back-end-of-line (BEOL) parts to different foundries, is to prevent overproduction, piracy of the intellectual property (IP), or targeted insertion of hardware Trojans by adversaries in the FEOL facility. In this work, we challenge the security promise of split manufacturing by formulating various layout-level placement and routing hints as vector- and image-based features. We construct a sophisticated deep neural network which can infer the missing BEOL connections with high accuracy. Compared with the publicly available network-flow attack [1], for the same set of ISCAS-85benchmarks, we achieve 1.21× accuracy when splitting on M1 and 1.12× accuracy when splitting on M3 with less than 1% running time.
2019-12-30
Iqbal, Maryam, Iqbal, Mohammad Ayman.  2019.  Attacks Due to False Data Injection in Smart Grids: Detection Protection. 2019 1st Global Power, Energy and Communication Conference (GPECOM). :451-455.

As opposed to a traditional power grid, a smart grid can help utilities to save energy and therefore reduce the cost of operation. It also increases reliability of the system In smart grids the quality of monitoring and control can be adequately improved by incorporating computing and intelligent communication knowledge. However, this exposes the system to false data injection (FDI) attacks and the system becomes vulnerable to intrusions. Therefore, it is important to detect such false data injection attacks and provide an algorithm for the protection of system against such attacks. In this paper a comparison between three FDI detection methods has been made. An H2 control method has then been proposed to detect and control the false data injection on a 12th order model of a smart grid. Disturbances and uncertainties were added to the system and the results show the system to be fully controllable. This paper shows the implementation of a feedback controller to fully detect and mitigate the false data injection attacks. The controller can be incorporated in real life smart grid operations.

2020-09-04
Tsingenopoulos, Ilias, Preuveneers, Davy, Joosen, Wouter.  2019.  AutoAttacker: A reinforcement learning approach for black-box adversarial attacks. 2019 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :229—237.
Recent research has shown that machine learning models are susceptible to adversarial examples, allowing attackers to trick a machine learning model into making a mistake and producing an incorrect output. Adversarial examples are commonly constructed or discovered by using gradient-based methods that require white-box access to the model. In most real-world AI system deployments, having complete access to the machine learning model is an unrealistic threat model. However, it is possible for an attacker to construct adversarial examples even in the black-box case - where we assume solely a query capability to the model - with a variety of approaches each with its advantages and shortcomings. We introduce AutoAttacker, a novel reinforcement learning framework where agents learn how to operate around the black-box model by querying it, to effectively extract the underlying decision behaviour, and to undermine it successfully. AutoAttacker is a first of kind framework that uses reinforcement learning and assumes nothing about the differentiability or structure of the underlying function and is thus robust towards common defenses like gradient obfuscation or adversarial training. Finally, without differentiable output, as in binary classification, most methods cease to operate and require either an approximation of the gradient, or another approach altogether. Our approach, however, maintains the capability to function when the output descriptiveness diminishes.
2019-12-02
Kelly, Daniel M., Wellons, Christopher C., Coffman, Joel, Gearhart, Andrew S..  2019.  Automatically Validating the Effectiveness of Software Diversity Schemes. 2019 49th Annual IEEE/IFIP International Conference on Dependable Systems and Networks – Supplemental Volume (DSN-S). :1–2.
Software diversity promises to invert the current balance of power in cybersecurity by preventing exploit reuse. Nevertheless, the comparative evaluation of diversity techniques has received scant attention. In ongoing work, we use the DARPA Cyber Grand Challenge (CGC) environment to assess the effectiveness of diversifying compilers in mitigating exploits. Our approach provides a quantitative comparison of diversity strategies and demonstrates wide variation in their effectiveness.
2019-12-30
Kahvazadeh, Sarang, Masip-Bruin, Xavi, Díaz, Rodrigo, Marín-Tordera, Eva, Jurnet, Alejandro, Garcia, Jordi, Juan, Ana, Simó, Ester.  2019.  Balancing Security Guarantees vs QoS Provisioning in Combined Fog-to-Cloud Systems. 2019 10th IFIP International Conference on New Technologies, Mobility and Security (NTMS). :1–6.

Several efforts are currently active in dealing with scenarios combining fog, cloud computing, out of which a significant proportion is devoted to control, and manage the resulting scenario. Certainly, although many challenging aspects must be considered towards the design of an efficient management solution, it is with no doubt that whatever the solution is, the quality delivered to the users when executing services and the security guarantees provided to the users are two key aspects to be considered in the whole design. Unfortunately, both requirements are often non-convergent, thus making a solution suitably addressing both aspects is a challenging task. In this paper, we propose a decoupled transversal security strategy, referred to as DCF, as a novel architectural oriented policy handling the QoS-Security trade-off, particularly designed to be applied to combined fog-to-cloud systems, and specifically highlighting its impact on the delivered QoS.

2020-03-18
Boukria, Sarra, Guerroumi, Mohamed, Romdhani, Imed.  2019.  BCFR: Blockchain-based Controller Against False Flow Rule Injection in SDN. 2019 IEEE Symposium on Computers and Communications (ISCC). :1034–1039.

Software Defined Networking (SDN) technology increases the evolution of Internet and network development. SDN, with its logical centralization of controllers and global network overview changes the network's characteristics, on term of flexibility, availability and programmability. However, this development increased the network communication security challenges. To enhance the SDN security, we propose the BCFR solution to avoid false flow rules injection in SDN data layer devices. In this solution, we use the blockchain technology to provide the controller authentication and the integrity of the traffic flow circulated between the controller and the other network elements. This work is implemented using OpenStack platform and Onos controller. The evaluation results show the effectiveness of our proposal.

2020-04-10
Mucchi, Lorenzo, Nizzi, Francesca, Pecorella, Tommaso, Fantacci, Romano, Esposito, Flavio.  2019.  Benefits of Physical Layer Security to Cryptography: Tradeoff and Applications. 2019 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom). :1—3.
Physical-layer security (PLS) has raised the attention of the research community in recent years, particularly for Internet of things (IoT) applications. Despite the use of classical cryptography, PLS provides security at physical layer, regardless of the computational power owned by the attacker. The investigations on PLS are numerous in the literature, but one main issue seems to be kept apart: how to measure the benefit that PLS can bring to cryptography? This paper tries to answer this question with an initial performance analysis of PLS in conjunction with typical cryptography of wireless communication protocols. Our results indicate that PLS can help cryptography to harden the attacker job in real operative scenario: PLS can increase the detection errors at the attacker's receiver, leading to inability to recover the cipher key, even if the plaintext is known.
2020-03-23
Rathore, Heena, Samant, Abhay, Guizani, Mohsen.  2019.  A Bio-Inspired Framework to Mitigate DoS Attacks in Software Defined Networking. 2019 10th IFIP International Conference on New Technologies, Mobility and Security (NTMS). :1–5.
Software Defined Networking (SDN) is an emerging architecture providing services on a priority basis for real-time communication, by pulling out the intelligence from the hardware and developing a better management system for effective networking. Denial of service (DoS) attacks pose a significant threat to SDN, as it can disable the genuine hosts and routers by exhausting their resources. It is thus vital to provide efficient traffic management, both at the data layer and the control layer, thereby becoming more responsive to dynamic network threats such as DoS. Existing DoS prevention and mitigation models for SDN are computationally expensive and are slow to react. This paper introduces a novel biologically inspired architecture for SDN to detect DoS flooding attacks. The proposed biologically inspired architecture utilizes the concepts of the human immune system to provide a robust solution against DoS attacks in SDNs. The two layer immune inspired framework, viz innate layer and adaptive layer, is initiated at the data layer and the control layer of SDN, respectively. The proposed model is reactive and lightweight for DoS mitigation in SDNs.
2020-09-04
Song, Chengru, Xu, Changqiao, Yang, Shujie, Zhou, Zan, Gong, Changhui.  2019.  A Black-Box Approach to Generate Adversarial Examples Against Deep Neural Networks for High Dimensional Input. 2019 IEEE Fourth International Conference on Data Science in Cyberspace (DSC). :473—479.
Generating adversarial samples is gathering much attention as an intuitive approach to evaluate the robustness of learning models. Extensive recent works have demonstrated that numerous advanced image classifiers are defenseless to adversarial perturbations in the white-box setting. However, the white-box setting assumes attackers to have prior knowledge of model parameters, which are generally inaccessible in real world cases. In this paper, we concentrate on the hard-label black-box setting where attackers can only pose queries to probe the model parameters responsible for classifying different images. Therefore, the issue is converted into minimizing non-continuous function. A black-box approach is proposed to address both massive queries and the non-continuous step function problem by applying a combination of a linear fine-grained search, Fibonacci search, and a zeroth order optimization algorithm. However, the input dimension of a image is so high that the estimation of gradient is noisy. Hence, we adopt a zeroth-order optimization method in high dimensions. The approach converts calculation of gradient into a linear regression model and extracts dimensions that are more significant. Experimental results illustrate that our approach can relatively reduce the amount of queries and effectively accelerate convergence of the optimization method.
2020-02-10
Sun, Shuang, Chen, Shudong, Du, Rong, Li, Weiwei, Qi, Donglin.  2019.  Blockchain Based Fine-Grained and Scalable Access Control for IoT Security and Privacy. 2019 IEEE Fourth International Conference on Data Science in Cyberspace (DSC). :598–603.
In this paper, we focuses on an access control issue in the Internet of Things (IoT). Generally, we firstly propose a decentralized IoT system based on blockchain. Then we establish a secure fine-grained access control strategies for users, devices, data, and implement the strategies with smart contract. To trigger the smart contract, we design different transactions. Finally, we use the multi-index table struct for the access right's establishment, and store the access right into Key-Value database to improve the scalability of the decentralized IoT system. In addition, to improve the security of the system we also store the access records on the blockchain and database.
2020-02-24
Brotsis, Sotirios, Kolokotronis, Nicholas, Limniotis, Konstantinos, Shiaeles, Stavros, Kavallieros, Dimitris, Bellini, Emanuele, Pavué, Clément.  2019.  Blockchain Solutions for Forensic Evidence Preservation in IoT Environments. 2019 IEEE Conference on Network Softwarization (NetSoft). :110–114.
The technological evolution brought by the Internet of things (IoT) comes with new forms of cyber-attacks exploiting the complexity and heterogeneity of IoT networks, as well as, the existence of many vulnerabilities in IoT devices. The detection of compromised devices, as well as the collection and preservation of evidence regarding alleged malicious behavior in IoT networks, emerge as areas of high priority. This paper presents a blockchain-based solution, which is designed for the smart home domain, dealing with the collection and preservation of digital forensic evidence. The system utilizes a private forensic evidence database, where the captured evidence is stored, along with a permissioned blockchain that allows providing security services like integrity, authentication, and non-repudiation, so that the evidence can be used in a court of law. The blockchain stores evidences' metadata, which are critical for providing the aforementioned services, and interacts via smart contracts with the different entities involved in an investigation process, including Internet service providers, law enforcement agencies and prosecutors. A high-level architecture of the blockchain-based solution is presented that allows tackling the unique challenges posed by the need for digitally handling forensic evidence collected from IoT networks.
2020-06-15
Abbasi, Ali, Wetzels, Jos, Holz, Thorsten, Etalle, Sandro.  2019.  Challenges in Designing Exploit Mitigations for Deeply Embedded Systems. 2019 IEEE European Symposium on Security and Privacy (EuroS P). :31–46.

Memory corruption vulnerabilities have been around for decades and rank among the most prevalent vulnerabilities in embedded systems. Yet this constrained environment poses unique design and implementation challenges that significantly complicate the adoption of common hardening techniques. Combined with the irregular and involved nature of embedded patch management, this results in prolonged vulnerability exposure windows and vulnerabilities that are relatively easy to exploit. Considering the sensitive and critical nature of many embedded systems, this situation merits significant improvement. In this work, we present the first quantitative study of exploit mitigation adoption in 42 embedded operating systems, showing the embedded world to significantly lag behind the general-purpose world. To improve the security of deeply embedded systems, we subsequently present μArmor, an approach to address some of the key gaps identified in our quantitative analysis. μArmor raises the bar for exploitation of embedded memory corruption vulnerabilities, while being adoptable on the short term without incurring prohibitive extra performance or storage costs.