Biblio
The anonymity and decentralization of Bitcoin make it widely accepted in illegal transactions, such as money laundering, drug and weapon trafficking, gambling, to name a few, which has already caused significant security risk all around the world. The obvious de-anonymity approach that matches transaction addresses and users is not possible in practice due to limited annotated data set. In this paper, we divide addresses into four types, exchange, gambling, service, and general, and propose targeted addresses identification algorithms with high fault tolerance which may be employed in a wide range of applications. We use network representation learning to extract features and train imbalanced multi-classifiers. Experimental results validated the effectiveness of the proposed method.
Most of the data manipulation attacks on deep neural networks (DNNs) during the training stage introduce a perceptible noise that can be catered by preprocessing during inference, or can be identified during the validation phase. There-fore, data poisoning attacks during inference (e.g., adversarial attacks) are becoming more popular. However, many of them do not consider the imperceptibility factor in their optimization algorithms, and can be detected by correlation and structural similarity analysis, or noticeable (e.g., by humans) in multi-level security system. Moreover, majority of the inference attack rely on some knowledge about the training dataset. In this paper, we propose a novel methodology which automatically generates imperceptible attack images by using the back-propagation algorithm on pre-trained DNNs, without requiring any information about the training dataset (i.e., completely training data-unaware). We present a case study on traffic sign detection using the VGGNet trained on the German Traffic Sign Recognition Benchmarks dataset in an autonomous driving use case. Our results demonstrate that the generated attack images successfully perform misclassification while remaining imperceptible in both “subjective” and “objective” quality tests.
This paper presents TrustSign, a novel, trusted automatic malware signature generation method based on high-level deep features transferred from a VGG-19 neural network model pre-trained on the ImageNet dataset. While traditional automatic malware signature generation techniques rely on static or dynamic analysis of the malware's executable, our method overcomes the limitations associated with these techniques by producing signatures based on the presence of the malicious process in the volatile memory. Signatures generated using TrustSign well represent the real malware behavior during runtime. By leveraging the cloud's virtualization technology, TrustSign analyzes the malicious process in a trusted manner, since the malware is unaware and cannot interfere with the inspection procedure. Additionally, by removing the dependency on the malware's executable, our method is capable of signing fileless malware. Thus, we focus our research on in-browser cryptojacking attacks, which current antivirus solutions have difficulty to detect. However, TrustSign is not limited to cryptojacking attacks, as our evaluation included various ransomware samples. TrustSign's signature generation process does not require feature engineering or any additional model training, and it is done in a completely unsupervised manner, obviating the need for a human expert. Therefore, our method has the advantage of dramatically reducing signature generation and distribution time. The results of our experimental evaluation demonstrate TrustSign's ability to generate signatures invariant to the process state over time. By using the signatures generated by TrustSign as input for various supervised classifiers, we achieved 99.5% classification accuracy.
The purpose of using deception technology in cybersecurity is to misdirect or lure attackers away from valuable technology assets once they have successfully infiltrated a network, using traps or decoys. Deception technology can also be used to further learn about the motives and tactics of attackers. Several components are required for the effective performance of deception.
In cybersecurity, deception is redundant if it cannot misdirect, confuse, and lure attackers into traps and dead-ends. It is the art of tricking attackers into overextending and exposing themselves. To deceive attackers, an organization’s security team must see things from the adversary’s perspective.
There are three misconceptions about deception technology in regard to its value, complexity, and application. Deception technology is valuable in that it provides accurate detection of attacks. Deceptions are organized, deployed, and managed by modem deception technology through the use of machine learning. Different Organizations of all sizes and types can apply deception in their cybersecurity strategies.
Deep learning is the segment of artificial intelligence which is involved with imitating the learning approach that human beings utilize to get some different types of knowledge. Analyzing videos, a part of deep learning is one of the most basic problems of computer vision and multi-media content analysis for at least 20 years. The job is very challenging as the video contains a lot of information with large differences and difficulties. Human supervision is still required in all surveillance systems. New advancement in computer vision which are observed as an important trend in video surveillance leads to dramatic efficiency gains. We propose a CCTV based theft detection along with tracking of thieves. We use image processing to detect theft and motion of thieves in CCTV footage, without the use of sensors. This system concentrates on object detection. The security personnel can be notified about the suspicious individual committing burglary using Real-time analysis of the movement of any human from CCTV footage and thus gives a chance to avert the same.
The pace of technological development in automotive and transportation has been accelerating rapidly in recent years. Automation of driver assistance systems, autonomous driving, increasing vehicle connectivity and emerging inter-vehicular communication (V2V) are among the most disruptive innovations, the latter of which also raises numerous unprecedented security concerns. This paper is focused on the security of V2V communication in vehicle ad-hoc networks (VANET) with the main goal of identifying realistic attack scenarios and evaluating their impact, as well as possible security countermeasures to thwart the attacks. The evaluation has been done in OMNeT++ simulation environment and the results indicate that common attacks, such as replay attack or message falsification, can be eliminated by utilizing digital signatures and message validation. However, detection and mitigation of advanced attacks such as Sybil attack requires more complex approach. The paper also presents a simple detection method of Sybil nodes based on measuring the signal strength of received messages and maintaining reputation of sending nodes. The evaluation results suggest that the presented method is able to detect Sybil nodes in VANET and contributes to the improvement of traffic flow.
Mutriku wave farm is the first commercial plant all around the world. Since July 2011 it has been continuously selling electricity to the grid. It operates with the OWC technology and has 14 operating Wells-type turbines. In the plant there is a SCADA data recording system that collects the most important parameters of the turbines; among them, the pressure in the inlet chamber, the position of the security valve (from fully open to fully closed) and the generated power in the last 5 minutes. There is also an electricity meter which provides information about the amount of electric energy sold to the grid. The 2014 winter (January, February and March), and especially the first fortnight of February, was a stormy winter with rough sea state conditions. This was reflected both in the performance of the turbines (high pressure values, up to 9234.2 Pa; low opening degrees of the security valve, down to 49.4°; and high power generation of about 7681.6 W, all these data being average values) and in the calculated capacity factor (CF = 0.265 in winter and CF = 0.294 in February 2014). This capacity factor is a good tool for the comparison of different WEC technologies or different locations and shows an important seasonal behavior.
In VLSI industry the design cycle is categorized into Front End Design and Back End Design. Front End Design flow is from Specifications to functional verification of RTL design. Back End Design is from logic synthesis to fabrication of chip. Handheld devices like Mobile SOC's is an amalgamation of many components like GPU, camera, sensor, display etc. on one single chip. In order to integrate these components protocols are needed. One such protocol in the emerging trend is I3C protocol. I3C is abbreviated as Improved Inter Integrated Circuit developed by Mobile Industry Processor Interface (MIPI) alliance. Most probably used for the interconnection of sensors in Mobile SOC's. The main motivation of adapting the standard is for the increase speed and low pin count in most of the hardware chips. The bus protocol is backward compatible with I2C devices. The paper includes detailed study I3C bus protocol and developing verification environment for the protocol. The test bench environment is written and verified using system Verilog and UVM. The Universal Verification Methodology (UVM) is base class library built using System Verilog which provides the fundamental blocks needed to quickly develop reusable and well-constructed verification components and test environments. The Functional Coverage of around 93.55 % and Code Coverage of around 98.89 % is achieved by verification closure.
As opposed to a traditional power grid, a smart grid can help utilities to save energy and therefore reduce the cost of operation. It also increases reliability of the system In smart grids the quality of monitoring and control can be adequately improved by incorporating computing and intelligent communication knowledge. However, this exposes the system to false data injection (FDI) attacks and the system becomes vulnerable to intrusions. Therefore, it is important to detect such false data injection attacks and provide an algorithm for the protection of system against such attacks. In this paper a comparison between three FDI detection methods has been made. An H2 control method has then been proposed to detect and control the false data injection on a 12th order model of a smart grid. Disturbances and uncertainties were added to the system and the results show the system to be fully controllable. This paper shows the implementation of a feedback controller to fully detect and mitigate the false data injection attacks. The controller can be incorporated in real life smart grid operations.
Several efforts are currently active in dealing with scenarios combining fog, cloud computing, out of which a significant proportion is devoted to control, and manage the resulting scenario. Certainly, although many challenging aspects must be considered towards the design of an efficient management solution, it is with no doubt that whatever the solution is, the quality delivered to the users when executing services and the security guarantees provided to the users are two key aspects to be considered in the whole design. Unfortunately, both requirements are often non-convergent, thus making a solution suitably addressing both aspects is a challenging task. In this paper, we propose a decoupled transversal security strategy, referred to as DCF, as a novel architectural oriented policy handling the QoS-Security trade-off, particularly designed to be applied to combined fog-to-cloud systems, and specifically highlighting its impact on the delivered QoS.
Software Defined Networking (SDN) technology increases the evolution of Internet and network development. SDN, with its logical centralization of controllers and global network overview changes the network's characteristics, on term of flexibility, availability and programmability. However, this development increased the network communication security challenges. To enhance the SDN security, we propose the BCFR solution to avoid false flow rules injection in SDN data layer devices. In this solution, we use the blockchain technology to provide the controller authentication and the integrity of the traffic flow circulated between the controller and the other network elements. This work is implemented using OpenStack platform and Onos controller. The evaluation results show the effectiveness of our proposal.
Memory corruption vulnerabilities have been around for decades and rank among the most prevalent vulnerabilities in embedded systems. Yet this constrained environment poses unique design and implementation challenges that significantly complicate the adoption of common hardening techniques. Combined with the irregular and involved nature of embedded patch management, this results in prolonged vulnerability exposure windows and vulnerabilities that are relatively easy to exploit. Considering the sensitive and critical nature of many embedded systems, this situation merits significant improvement. In this work, we present the first quantitative study of exploit mitigation adoption in 42 embedded operating systems, showing the embedded world to significantly lag behind the general-purpose world. To improve the security of deeply embedded systems, we subsequently present μArmor, an approach to address some of the key gaps identified in our quantitative analysis. μArmor raises the bar for exploitation of embedded memory corruption vulnerabilities, while being adoptable on the short term without incurring prohibitive extra performance or storage costs.