Biblio

Found 19604 results

2019-03-15
Bian, R., Xue, M., Wang, J..  2018.  Building Trusted Golden Models-Free Hardware Trojan Detection Framework Against Untrustworthy Testing Parties Using a Novel Clustering Ensemble Technique. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :1458-1463.

As a result of the globalization of integrated circuits (ICs) design and fabrication process, ICs are becoming vulnerable to hardware Trojans. Most of the existing hardware Trojan detection works suppose that the testing stage is trustworthy. However, testing parties may conspire with malicious attackers to modify the results of hardware Trojan detection. In this paper, we propose a trusted and robust hardware Trojan detection framework against untrustworthy testing parties exploiting a novel clustering ensemble method. The proposed technique can expose the malicious modifications on Trojan detection results introduced by untrustworthy testing parties. Compared with the state-of-the-art detection methods, the proposed technique does not require fabricated golden chips or simulated golden models. The experiment results on ISCAS89 benchmark circuits show that the proposed technique can resist modifications robustly and detect hardware Trojans with decent accuracy (up to 91%).

2019-03-06
Nieto, A., Acien, A., Lopez, J..  2018.  Capture the RAT: Proximity-Based Attacks in 5G Using the Routine Activity Theory. 2018 IEEE 16th Intl Conf on Dependable, Autonomic and Secure Computing, 16th Intl Conf on Pervasive Intelligence and Computing, 4th Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress(DASC/PiCom/DataCom/CyberSciTech). :520-527.

The fifth generation of cellular networks (5G) will enable different use cases where security will be more critical than ever before (e.g. autonomous vehicles and critical IoT devices). Unfortunately, the new networks are being built on the certainty that security problems cannot be solved in the short term. Far from reinventing the wheel, one of our goals is to allow security software developers to implement and test their reactive solutions for the capillary network of 5G devices. Therefore, in this paper a solution for analysing proximity-based attacks in 5G environments is modelled and tested using OMNET++. The solution, named CRAT, is able to decouple the security analysis from the hardware of the device with the aim to extend the analysis of proximity-based attacks to different use-cases in 5G. We follow a high-level approach, in which the devices can take the role of victim, offender and guardian following the principles of the routine activity theory.

2019-03-04
Lin, Y., Qi, Z., Wu, H., Yang, Z., Zhang, J., Wenyin, L..  2018.  CoderChain: A BlockChain Community for Coders. 2018 1st IEEE International Conference on Hot Information-Centric Networking (HotICN). :246–247.
An online community based on blockchain is proposed for software developers to share, assess, and learn codes and other codes or software related knowledge. It involves three modules or roles, namely: developer (or coder, or more generally, knowledge contributor), code (or knowledge contribution), and jury (or assessor, who is usually a developer with advanced skills), in addition to the blockchain based database. Each full node of the blockchain hosts a copy of all activities of developers in such community, including uploading contributions, assessing others' contributions, and conducting transactions. Smart contracts are applicable to automate transactions after code assessment or other related activities. The system aims to assess and improve the value of codes accurately, stimulate the creativity of the developers, and improve software development efficiency, so as to establish a virtuous cycle of a software development community.
2020-10-06
Nuqui, Reynaldo, Hong, Junho, Kondabathini, Anil, Ishchenko, Dmitry, Coats, David.  2018.  A Collaborative Defense for Securing Protective Relay Settings in Electrical Cyber Physical Systems. 2018 Resilience Week (RWS). :49—54.
Modern power systems today are protected and controlled increasingly by embedded systems of computing technologies with a great degree of collaboration enabled by communication. Energy cyber-physical systems such as power systems infrastructures are increasingly vulnerable to cyber-attacks on the protection and control layer. We present a method of securing protective relays from malicious change in protective relay settings via collaboration of devices. Each device checks the proposed setting changes of its neighboring devices for consistency and coordination with its own settings using setting rules based on relay coordination principles. The method is enabled via peer-to-peer communication between IEDs. It is validated in a cyber-physical test bed containing a real time digital simulator and actual relays that communicate via IEC 61850 GOOSE messages. Test results showed improvement in cyber physical security by using domain based rules to block malicious changes in protection settings caused by simulated cyber-attacks. The method promotes the use of defense systems that are aware of the physical systems which they are designed to secure.
2019-02-25
Gupta, M., Bakliwal, A., Agarwal, S., Mehndiratta, P..  2018.  A Comparative Study of Spam SMS Detection Using Machine Learning Classifiers. 2018 Eleventh International Conference on Contemporary Computing (IC3). :1–7.
With technological advancements and increment in content based advertisement, the use of Short Message Service (SMS) on phones has increased to such a significant level that devices are sometimes flooded with a number of spam SMS. These spam messages can lead to loss of private data as well. There are many content-based machine learning techniques which have proven to be effective in filtering spam emails. Modern day researchers have used some stylistic features of text messages to classify them to be ham or spam. SMS spam detection can be greatly influenced by the presence of known words, phrases, abbreviations and idioms. This paper aims to compare different classifying techniques on different datasets collected from previous research works, and evaluate them on the basis of their accuracies, precision, recall and CAP Curve. The comparison has been performed between traditional machine learning techniques and deep learning methods.
2019-12-10
Tian, Yun, Xu, Wenbo, Qin, Jing, Zhao, Xiaofan.  2018.  Compressive Detection of Random Signals from Sparsely Corrupted Measurements. 2018 International Conference on Network Infrastructure and Digital Content (IC-NIDC). :389-393.

Compressed sensing (CS) integrates sampling and compression into a single step to reduce the processed data amount. However, the CS reconstruction generally suffers from high complexity. To solve this problem, compressive signal processing (CSP) is recently proposed to implement some signal processing tasks directly in the compressive domain without reconstruction. Among various CSP techniques, compressive detection achieves the signal detection based on the CS measurements. This paper investigates the compressive detection problem of random signals when the measurements are corrupted. Different from the current studies that only consider the dense noise, our study considers both the dense noise and sparse error. The theoretical performance is derived, and simulations are provided to verify the derived theoretical results.

2019-03-15
Xue, M., Bian, R., Wang, J., Liu, W..  2018.  A Co-Training Based Hardware Trojan Detection Technique by Exploiting Unlabeled ICs and Inaccurate Simulation Models. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :1452-1457.

Integrated circuits (ICs) are becoming vulnerable to hardware Trojans. Most of existing works require golden chips to provide references for hardware Trojan detection. However, a golden chip is extremely difficult to obtain. In previous work, we have proposed a classification-based golden chips-free hardware Trojan detection technique. However, the algorithm in the previous work are trained by simulated ICs without considering that there may be a shift which occurs between the simulation and the silicon fabrication. It is necessary to learn from actual silicon fabrication in order to obtain an accurate and effective classification model. We propose a co-training based hardware Trojan detection technique exploiting unlabeled fabricated ICs and inaccurate simulation models, to provide reliable detection capability when facing fabricated ICs, while eliminating the need of fabricated golden chips. First, we train two classification algorithms using simulated ICs. During test-time, the two algorithms can identify different patterns in the unlabeled ICs, and thus be able to label some of these ICs for the further training of the another algorithm. Moreover, we use a statistical examination to choose ICs labeling for the another algorithm in order to help prevent a degradation in performance due to the increased noise in the labeled ICs. We also use a statistical technique for combining the hypotheses from the two classification algorithms to obtain the final decision. The theoretical basis of why the co-training method can work is also described. Experiment results on benchmark circuits show that the proposed technique can detect unknown Trojans with high accuracy (92% 97%) and recall (88% 95%).

2019-02-25
Essa, A., Al-Shoura, T., Nabulsi, A. Al, Al-Ali, A. R., Aloul, F..  2018.  Cyber Physical Sensors System Security: Threats, Vulnerabilities, and Solutions. 2018 2nd International Conference on Smart Grid and Smart Cities (ICSGSC). :62-67.

A Cyber Physical Sensor System (CPSS) consists of a computing platform equipped with wireless access points, sensors, and actuators. In a Cyber Physical System, CPSS constantly collects data from a physical object that is under process and performs local real-time control activities based on the process algorithm. The collected data is then transmitted through the network layer to the enterprise command and control center or to the cloud computing services for further processing and analysis. This paper investigates the CPSS' most common cyber security threats and vulnerabilities and provides countermeasures. Furthermore, the paper addresses how the CPSS are attacked, what are the leading consequences of the attacks, and the possible remedies to prevent them. Detailed case studies are presented to help the readers understand the CPSS threats, vulnerabilities, and possible solutions.

2019-04-01
Ledbetter, W., Glisson, W., McDonald, T., Andel, T., Grispos, G., Choo, K..  2018.  Digital Blues: An Investigation Into the Use of Bluetooth Protocols. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :498–503.
The proliferation of Bluetooth mobile device communications into all aspects of modern society raises security questions by both academicians and practitioners. This environment prompted an investigation into the real-world use of Bluetooth protocols along with an analysis of documented security attacks. The experiment discussed in this paper collected data for one week in a local coffee shop. The data collection took about an hour each day and identified 478 distinct devices. The contribution of this research is two-fold. First, it provides insight into real-world Bluetooth protocols that are being utilized by the general public. Second, it provides foundational research that is necessary for future Bluetooth penetration testing research.
2020-11-23
Sutton, A., Samavi, R., Doyle, T. E., Koff, D..  2018.  Digitized Trust in Human-in-the-Loop Health Research. 2018 16th Annual Conference on Privacy, Security and Trust (PST). :1–10.
In this paper, we propose an architecture that utilizes blockchain technology for enabling verifiable trust in collaborative health research environments. The architecture supports the human-in-the-loop paradigm for health research by establishing trust between participants, including human researchers and AI systems, by making all data transformations transparent and verifiable by all participants. We define the trustworthiness of the system and provide an analysis of the architecture in terms of trust requirements. We then evaluate our architecture by analyzing its resiliency to common security threats and through an experimental realization.
2020-10-12
Sharafaldin, Iman, Ghorbani, Ali A..  2018.  EagleEye: A Novel Visual Anomaly Detection Method. 2018 16th Annual Conference on Privacy, Security and Trust (PST). :1–6.
We propose a novel visualization technique (Eagle-Eye) for intrusion detection, which visualizes a host as a commu- nity of system call traces in two-dimensional space. The goal of EagleEye is to visually cluster the system call traces. Although human eyes can easily perceive anomalies using EagleEye view, we propose two different methods called SAM and CPM that use the concept of data depth to help administrators distinguish between normal and abnormal behaviors. Our experimental results conducted on Australian Defence Force Academy Linux Dataset (ADFA-LD), which is a modern system calls dataset that includes new exploits and attacks on various programs, show EagleEye's efficiency in detecting diverse exploits and attacks.
2019-02-25
Peng, W., Huang, L., Jia, J., Ingram, E..  2018.  Enhancing the Naive Bayes Spam Filter Through Intelligent Text Modification Detection. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :849–854.

Spam emails have been a chronic issue in computer security. They are very costly economically and extremely dangerous for computers and networks. Despite of the emergence of social networks and other Internet based information exchange venues, dependence on email communication has increased over the years and this dependence has resulted in an urgent need to improve spam filters. Although many spam filters have been created to help prevent these spam emails from entering a user's inbox, there is a lack or research focusing on text modifications. Currently, Naive Bayes is one of the most popular methods of spam classification because of its simplicity and efficiency. Naive Bayes is also very accurate; however, it is unable to correctly classify emails when they contain leetspeak or diacritics. Thus, in this proposes, we implemented a novel algorithm for enhancing the accuracy of the Naive Bayes Spam Filter so that it can detect text modifications and correctly classify the email as spam or ham. Our Python algorithm combines semantic based, keyword based, and machine learning algorithms to increase the accuracy of Naive Bayes compared to Spamassassin by over two hundred percent. Additionally, we have discovered a relationship between the length of the email and the spam score, indicating that Bayesian Poisoning, a controversial topic, is actually a real phenomenon and utilized by spammers.

2019-11-11
Subahi, Alanoud, Theodorakopoulos, George.  2018.  Ensuring Compliance of IoT Devices with Their Privacy Policy Agreement. 2018 IEEE 6th International Conference on Future Internet of Things and Cloud (FiCloud). :100–107.
In the past few years, Internet of Things (IoT) devices have emerged and spread everywhere. Many researchers have been motivated to study the security issues of IoT devices due to the sensitive information they carry about their owners. Privacy is not simply about encryption and access authorization, but also about what kind of information is transmitted, how it used and to whom it will be shared with. Thus, IoT manufacturers should be compelled to issue Privacy Policy Agreements for their respective devices as well as ensure that the actual behavior of the IoT device complies with the issued privacy policy. In this paper, we implement a test bed for ensuring compliance of Internet of Things data disclosure to the corresponding privacy policy. The fundamental approach used in the test bed is to capture the data traffic between the IoT device and the cloud, between the IoT device and its application on the smart-phone, and between the IoT application and the cloud and analyze those packets for various features. We test 11 IoT manufacturers and the results reveal that half of those IoT manufacturers do not have an adequate privacy policy specifically for their IoT devices. In addition, we prove that the action of two IoT devices does not comply with what they stated in their privacy policy agreement.
2019-03-22
Alavizadeh, H., Jang-Jaccard, J., Kim, D. S..  2018.  Evaluation for Combination of Shuffle and Diversity on Moving Target Defense Strategy for Cloud Computing. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :573-578.

Moving Target Defence (MTD) has been recently proposed and is an emerging proactive approach which provides an asynchronous defensive strategies. Unlike traditional security solutions that focused on removing vulnerabilities, MTD makes a system dynamic and unpredictable by continuously changing attack surface to confuse attackers. MTD can be utilized in cloud computing to address the cloud's security-related problems. There are many literature proposing MTD methods in various contexts, but it still lacks approaches to evaluate the effectiveness of proposed MTD method. In this paper, we proposed a combination of Shuffle and Diversity MTD techniques and investigate on the effects of deploying these techniques from two perspectives lying on two groups of security metrics (i) system risk: which is the cloud providers' perspective and (ii) attack cost and return on attack: which are attacker's point of view. Moreover, we utilize a scalable Graphical Security Model (GSM) to enhance the security analysis complexity. Finally, we show that combining MTD techniques can improve both aforementioned two groups of security metrics while individual technique cannot.

2019-03-15
Cozzi, M., Galliere, J., Maurine, P..  2018.  Exploiting Phase Information in Thermal Scans for Stealthy Trojan Detection. 2018 21st Euromicro Conference on Digital System Design (DSD). :573-576.

Infrared thermography has been recognized for its ability to investigate integrated circuits in a non destructive way. Coupled to lock-in correlation it has proven efficient in detecting thermal hot spots. Most of the state of the Art measurement systems are based on amplitude analysis. In this paper we propose to investigate weak thermal hot spots using the phase of infrared signals. We demonstrate that phase analysis is a formidable alternative to amplitude to detect small heat signatures. Finally, we apply our measurement platform and its detection method to the identification of stealthy hardware Trojans.

2019-02-13
Feng, Y., Akiyama, H., Lu, L., Sakurai, K..  2018.  Feature Selection for Machine Learning-Based Early Detection of Distributed Cyber Attacks. 2018 IEEE 16th Intl Conf on Dependable, Autonomic and Secure Computing, 16th Intl Conf on Pervasive Intelligence and Computing, 4th Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress(DASC/PiCom/DataCom/CyberSciTech). :173–180.

It is well known that distributed cyber attacks simultaneously launched from many hosts have caused the most serious problems in recent years including problems of privacy leakage and denial of services. Thus, how to detect those attacks at early stage has become an important and urgent topic in the cyber security community. For this purpose, recognizing C&C (Command & Control) communication between compromised bots and the C&C server becomes a crucially important issue, because C&C communication is in the preparation phase of distributed attacks. Although attack detection based on signature has been practically applied since long ago, it is well-known that it cannot efficiently deal with new kinds of attacks. In recent years, ML(Machine learning)-based detection methods have been studied widely. In those methods, feature selection is obviously very important to the detection performance. We once utilized up to 55 features to pick out C&C traffic in order to accomplish early detection of DDoS attacks. In this work, we try to answer the question that "Are all of those features really necessary?" We mainly investigate how the detection performance moves as the features are removed from those having lowest importance and we try to make it clear that what features should be payed attention for early detection of distributed attacks. We use honeypot data collected during the period from 2008 to 2013. SVM(Support Vector Machine) and PCA(Principal Component Analysis) are utilized for feature selection and SVM and RF(Random Forest) are for building the classifier. We find that the detection performance is generally getting better if more features are utilized. However, after the number of features has reached around 40, the detection performance will not change much even more features are used. It is also verified that, in some specific cases, more features do not always means a better detection performance. We also discuss 10 important features which have the biggest influence on classification.

2019-12-09
Yang, Chao, Chen, Xinghe, Song, Tingting, Jiang, Bin, Liu, Qin.  2018.  A Hybrid Recommendation Algorithm Based on Heuristic Similarity and Trust Measure. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :1413–1418.
In this paper, we propose a hybrid collaborative filtering recommendation algorithm based on heuristic similarity and trust measure, in order to alleviate the problem of data sparsity, cold start and trust measure. Firstly, a new similarity measure is implemented by weighted fusion of multiple similarity influence factors obtained from the rating matrix, so that the similarity measure becomes more accurate. Then, a user trust relationship computing model is implemented by constructing the user's trust network based on the trust propagation theory. On this basis, a SIMT collaborative filtering algorithm is designed which integrates trust and similarity instead of the similarity in traditional collaborative filtering algorithm. Further, an improved K nearest neighbor recommendation based on clustering algorithm is implemented for generation of a better recommendation list. Finally, a comparative experiment on FilmTrust dataset shows that the proposed algorithm has improved the quality and accuracy of recommendation, thus overcome the problem of data sparsity, cold start and trust measure to a certain extent.
2019-05-01
Konstantelos, I., Jamgotchian, G., Tindemans, S., Duchesne, P., Cole, S., Merckx, C., Strbac, G., Panciatici, P..  2018.  Implementation of a Massively Parallel Dynamic Security Assessment Platform for Large-Scale Grids. 2018 IEEE Power Energy Society General Meeting (PESGM). :1–1.

This paper presents a computational platform for dynamic security assessment (DSA) of large electricity grids, developed as part of the iTesla project. It leverages High Performance Computing (HPC) to analyze large power systems, with many scenarios and possible contingencies, thus paving the way for pan-European operational stability analysis. The results of the DSA are summarized by decision trees of 11 stability indicators. The platform's workflow and parallel implementation architecture is described in detail, including the way commercial tools are integrated into a plug-in architecture. A case study of the French grid is presented, with over 8000 scenarios and 1980 contingencies. Performance data of the case study (using 10,000 parallel cores) is analyzed, including task timings and data flows. Finally, the generated decision trees are compared with test data to quantify the functional performance of the DSA platform.

2019-02-21
Gao, Y..  2018.  An Improved Hybrid Group Intelligent Algorithm Based on Artificial Bee Colony and Particle Swarm Optimization. 2018 International Conference on Virtual Reality and Intelligent Systems (ICVRIS). :160–163.
Aiming at the disadvantage of poor convergence performance of PSO and artificial swarm algorithm, an improved hybrid algorithm is proposed to overcome the shortcomings of complex optimization problems. Through the test of four standard function by hybrid algorithm and compared the result with standard particle swarm optimization (PSO) algorithm and Artificial Bee Colony (ABC) algorithm, the convergence rate and convergence precision of the hybrid algorithm are both superior to those of the standard particle swarm algorithm and Artificial Bee Colony algorithm, presenting a better optimal performance.
2019-02-25
Vishagini, V., Rajan, A. K..  2018.  An Improved Spam Detection Method with Weighted Support Vector Machine. 2018 International Conference on Data Science and Engineering (ICDSE). :1–5.
Email is the most admired method of exchanging messages using the Internet. One of the intimidations to email users is to detect the spam they receive. This can be addressed using different detection and filtering techniques. Machine learning algorithms, especially Support Vector Machine (SVM), can play vital role in spam detection. We propose the use of weighted SVM for spam filtering using weight variables obtained by KFCM algorithm. The weight variables reflect the importance of different classes. The misclassification of emails is reduced by the growth of weight value. We evaluate the impact of spam detection using SVM, WSVM with KPCM and WSVM with KFCM.UCI Repository SMS Spam base dataset is used for our experimentation.
2020-12-01
Zhang, H., Liu, H., Deng, L., Wang, P., Rong, X., Li, Y., Li, B., Wang, H..  2018.  Leader Recognition and Tracking for Quadruped Robots. 2018 IEEE International Conference on Information and Automation (ICIA). :1438—1443.

To meet the high requirement of human-machine interaction, quadruped robots with human recognition and tracking capability are studied in this paper. We first introduce a marker recognition system which uses multi-thread laser scanner and retro-reflective markers to distinguish the robot's leader and other objects. When the robot follows leader autonomously, the variant A* algorithm which having obstacle grids extended virtually (EA*) is used to plan the path. But if robots need to track and follow the leader's path as closely as possible, it will trust that the path which leader have traveled is safe enough and uses the incremental form of EA* algorithm (IEA*) to reproduce the trajectory. The simulation and experiment results illustrate the feasibility and effectiveness of the proposed algorithms.

2019-03-18
Yongdong, C., Wei, W., Yanling, Z., Jinshuai, W..  2018.  Lightweight Security Signaling Mechanism in Optical Network for Smart Power Grid. 2018 IEEE International Conference on Computer and Communication Engineering Technology (CCET). :110–113.

The communication security issue brought by Smart Grid is of great importance and should not be ignored in backbone optical networks. With the aim to solve this problem, this paper firstly conducts deep analysis into the security challenge of optical network under smart power grid environment and proposes a so-called lightweight security signaling mechanism of multi-domain optical network for Energy Internet. The proposed scheme makes full advantage of current signaling protocol with some necessary extensions and security improvement. Thus, this lightweight security signaling protocol is designed to make sure the end-to-end trusted connection. Under the multi-domain communication services of smart power grid, evaluation simulation for the signaling interaction is conducted. Simulation results show that this proposed approach can greatly improve the security level of large-scale multi-domain optical network for smart power grid with better performance in term of connection success rate performance.

2019-02-14
Schuette, J., Brost, G. S..  2018.  LUCON: Data Flow Control for Message-Based IoT Systems. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :289-299.

Today's emerging Industrial Internet of Things (IIoT) scenarios are characterized by the exchange of data between services across enterprises. Traditional access and usage control mechanisms are only able to determine if data may be used by a subject, but lack an understanding of how it may be used. The ability to control the way how data is processed is however crucial for enterprises to guarantee (and provide evidence of) compliant processing of critical data, as well as for users who need to control if their private data may be analyzed or linked with additional information - a major concern in IoT applications processing personal information. In this paper, we introduce LUCON, a data-centric security policy framework for distributed systems that considers data flows by controlling how messages may be routed across services and how they are combined and processed. LUCON policies prevent information leaks, bind data usage to obligations, and enforce data flows across services. Policy enforcement is based on a dynamic taint analysis at runtime and an upfront static verification of message routes against policies. We discuss the semantics of these two complementing enforcement models and illustrate how LUCON policies are compiled from a simple policy language into a first-order logic representation. We demonstrate the practical application of LUCON in a real-world IoT middleware and discuss its integration into Apache Camel. Finally, we evaluate the runtime impact of LUCON and discuss performance and scalability aspects.

2019-02-08
Nichols, W., Hawrylak, P. J., Hale, J., Papa, M..  2018.  Methodology to Estimate Attack Graph System State from a Simulation of a Nuclear Research Reactor. 2018 Resilience Week (RWS). :84-87.
Hybrid attack graphs are a powerful tool when analyzing the cybersecurity of a cyber-physical system. However, it is important to ensure that this tool correctly models reality, particularly when modelling safety-critical applications, such as a nuclear reactor. By automatically verifying that a simulation reaches the state predicted by an attack graph by analyzing the final state of the simulation, this verification procedure can be accomplished. As such, a mechanism to estimate if a simulation reaches the expected state in a hybrid attack graph is proposed here for the nuclear reactor domain.
2020-11-23
Li, W., Zhu, H., Zhou, X., Shimizu, S., Xin, M., Jin, Q..  2018.  A Novel Personalized Recommendation Algorithm Based on Trust Relevancy Degree. 2018 IEEE 16th Intl Conf on Dependable, Autonomic and Secure Computing, 16th Intl Conf on Pervasive Intelligence and Computing, 4th Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress(DASC/PiCom/DataCom/CyberSciTech). :418–422.
The rapid development of the Internet and ecommerce has brought a lot of convenience to people's life. Personalized recommendation technology provides users with services that they may be interested according to users' information such as personal characteristics and historical behaviors. The research of personalized recommendation has been a hot point of data mining and social networks. In this paper, we focus on resolving the problem of data sparsity based on users' rating data and social network information, introduce a set of new measures for social trust and propose a novel personalized recommendation algorithm based on matrix factorization combining trust relevancy. Our experiments were performed on the Dianping datasets. The results show that our algorithm outperforms traditional approaches in terms of accuracy and stability.