Biblio
Today, beyond a legitimate usage, the numerous advantages of cloud computing are exploited by attackers, and Botnets supporting DDoS attacks are among the greatest beneficiaries of this malicious use. Such a phenomena is a major issue since it strongly increases the power of distributed massive attacks while involving the responsibility of cloud service providers that do not own appropriate solutions. In this paper, we present an original approach that enables a source-based de- tection of UDP-flood DDoS attacks based on a distributed system behavior analysis. Based on a principal component analysis, our contribution consists in: (1) defining the involvement of system metrics in a botcoud's behavior, (2) showing the invariability of the factorial space that defines a botcloud activity and (3) among several legitimate activities, using this factorial space to enable a botcloud detection.
This paper presents on-going research to define the basic models and architecture patterns for federated access control in heterogeneous (multi-provider) multi-cloud and inter-cloud environment. The proposed research contributes to the further definition of Intercloud Federation Framework (ICFF) which is a part of the general Intercloud Architecture Framework (ICAF) proposed by authors in earlier works. ICFF attempts to address the interoperability and integration issues in provisioning on-demand multi-provider multi-domain heterogeneous cloud infrastructure services. The paper describes the major inter-cloud federation scenarios that in general involve two types of federations: customer-side federation that includes federation between cloud based services and customer campus or enterprise infrastructure, and provider-side federation that is created by a group of cloud providers to outsource or broker their resources when provisioning services to customers. The proposed federated access control model uses Federated Identity Management (FIDM) model that can be also supported by the trusted third party entities such as Cloud Service Broker (CSB) and/or trust broker to establish dynamic trust relations between entities without previously existing trust. The research analyses different federated identity management scenarios, defines the basic architecture patterns and the main components of the distributed federated multi-domain Authentication and Authorisation infrastructure.
This work proposes a novel approach to infer and characterize Internet-scale DNS amplification DDoS attacks by leveraging the darknet space. Complementary to the pioneer work on inferring Distributed Denial of Service (DDoS) using darknet, this work shows that we can extract DDoS activities without relying on backscattered analysis. The aim of this work is to extract cyber security intelligence related to DNS Amplification DDoS activities such as detection period, attack duration, intensity, packet size, rate and geo- location in addition to various network-layer and flow-based insights. To achieve this task, the proposed approach exploits certain DDoS parameters to detect the attacks. We empirically evaluate the proposed approach using 720 GB of real darknet data collected from a /13 address space during a recent three months period. Our analysis reveals that the approach was successful in inferring significant DNS amplification DDoS activities including the recent prominent attack that targeted one of the largest anti-spam organizations. Moreover, the analysis disclosed the mechanism of such DNS amplification DDoS attacks. Further, the results uncover high-speed and stealthy attempts that were never previously documented. The case study of the largest DDoS attack in history lead to a better understanding of the nature and scale of this threat and can generate inferences that could contribute in detecting, preventing, assessing, mitigating and even attributing of DNS amplification DDoS activities.
This work proposes a novel approach to infer and characterize Internet-scale DNS amplification DDoS attacks by leveraging the darknet space. Complementary to the pioneer work on inferring Distributed Denial of Service (DDoS) using darknet, this work shows that we can extract DDoS activities without relying on backscattered analysis. The aim of this work is to extract cyber security intelligence related to DNS Amplification DDoS activities such as detection period, attack duration, intensity, packet size, rate and geo- location in addition to various network-layer and flow-based insights. To achieve this task, the proposed approach exploits certain DDoS parameters to detect the attacks. We empirically evaluate the proposed approach using 720 GB of real darknet data collected from a /13 address space during a recent three months period. Our analysis reveals that the approach was successful in inferring significant DNS amplification DDoS activities including the recent prominent attack that targeted one of the largest anti-spam organizations. Moreover, the analysis disclosed the mechanism of such DNS amplification DDoS attacks. Further, the results uncover high-speed and stealthy attempts that were never previously documented. The case study of the largest DDoS attack in history lead to a better understanding of the nature and scale of this threat and can generate inferences that could contribute in detecting, preventing, assessing, mitigating and even attributing of DNS amplification DDoS activities.
This brief proposes a framework to analyze multiple faults based on multiple fault simulation in a particle swarm optimization environment. Experimentation shows that up to ten faults can be diagnosed in a reasonable time. However, the scheme does not put any restriction on the number of simultaneous faults.
The concept of smart cities envisions services that provide distraction-free support for citizens. To realize this vision, the services must adapt to the citizens' situations, behaviors and intents at runtime. This requires services to gather and process the context of their users. Mobile devices provide a promising basis for determining context in an automated manner on a large scale. However, despite the wide availability of versatile programmable mobile platforms such as Android and iOS, there are only few examples of smart city applications. One reason for this is that existing software platforms primarily focus on low-level resource management which requires application developers to repeatedly tackle many challenging tasks. Examples include efficient data acquisition, secure and privacy-preserving data distribution as well as interoperable data integration. In this paper, we describe the GAMBAS middleware which tries to simplify the development of smart city applications. To do this, GAMBAS introduces a Java-based runtime system with an associated software development kit (SDK). To clarify how the runtime system and the SDK can be used for application development, we describe two simple applications that highlight different middleware functions.
Security is becoming a major concern in computing. New techniques are evolving every day; one of these techniques is Hash Visualization. Hash Visualization uses complex random generated images for security, these images can be used to hide data (watermarking). This proposed new technique improves hash visualization by using genetic algorithms. Genetic algorithms are a search optimization technique that is based on the evolution of living creatures. The proposed technique uses genetic algorithms to improve hash visualization. The used genetic algorithm was away faster than traditional previous ones, and it improved hash visualization by evolving the tree that was used to generate the images, in order to obtain a better and larger tree that will generate images with higher security. The security was satisfied by calculating the fitness value for each chromosome based on a specifically designed algorithm.
Mobile ad-hoc networks are a new field in networking because it works as an autonomous network. Application of mobile ad-hoc networks are increasing day by day in recent year now a days. So it important is increasing to provide suitable routing protocol and security from attacker. Mobile ad-hoc network now a days faces many problems such as small bandwidth, energy, security, limited computational and high mobility. The main problem in mobile ad-hoc networks is that wireless networks, Infrastructure wireless networks have larger bandwidth, larger memory, power backup and different routing protocol easily applies. But in case of mobile ad-hoc networks some of these application failed due to mobility and small power backup so it is required such type of routing protocol which is take small energy during the transfer of packet. So we see that still there are many challenging works in mobile ad-hoc networks remained and to research in this area related to routing protocol, security issues, solving energy problem and many more which is feasible to it. Our research most probably will be dedicated to Authentication in mobile ad-hoc network.
The convergence of the Internet and mobile computing enables personalised access to online services anywhere and anytime. This potent access capability creates opportunities for new business models which stimulates vigorous investment and rapid innovation. Unfortunately, this innovation also produces new vulnerabilities and threats, and the new business models also create incentives for attacks, because criminals will always follow the money. Unless the new threats are balanced with appropriate countermeasures, growth in the Internet and mobile services will encounter painful setbacks. Security and trust are two fundamental factors for sustainable development of identity management in online markets and communities. The aim of this study is to present an overview of the central aspects of identity management in the Internet and mobile computing with respect to security and trust.
Checking remote data possession is of crucial importance in public cloud storage. It enables the users to check whether their outsourced data have been kept intact without downloading the original data. The existing remote data possession checking (RDPC) protocols have been designed in the PKI (public key infrastructure) setting. The cloud server has to validate the users' certificates before storing the data uploaded by the users in order to prevent spam. This incurs considerable costs since numerous users may frequently upload data to the cloud server. This study addresses this problem with a new model of identity-based RDPC (ID-RDPC) protocols. The authors present the first ID-RDPC protocol proven to be secure assuming the hardness of the standard computational Diffie-Hellman problem. In addition to the structural advantage of elimination of certificate management and verification, the authors ID-RDPC protocol also outperforms the existing RDPC protocols in the PKI setting in terms of computation and communication.
Sampling and reconstruction (S&R) are used in virtually all areas of science and technology. The classical sampling theorem is a theoretical foundation of S&R. However, for a long time, only sampling rates and ways of the sampled signals representation were derived from it. The fact that the design of S&R circuits (SCs and RCs) is based on a certain interpretation of the sampling theorem was mostly forgotten. The traditional interpretation of this theorem was selected at the time of the theorem introduction because it offered the only feasible way of S&R realization then. At that time, its drawbacks did not manifest themselves. By now, this interpretation has largely exhausted its potential and inhibits future progress in the field. This tutorial expands the theoretical foundation of S&R. It shows that the traditional interpretation, which is indirect, can be replaced by the direct one or by various combinations of the direct and indirect interpretations that enable development of novel SCs and RCs (NSCs and NRCs) with advanced properties. The tutorial explains the basic principles of the NSCs and NRCs design, their advantages, as well as theoretical problems and practical challenges of their realization. The influence of the NSCs and NRCs on the architectures of SDRs and CRs is also discussed.
There is an increasing need for wireless sensor networks (WSNs) to be more tightly integrated with the Internet. Several real world deployment of stand-alone wireless sensor networks exists. A number of solutions have been proposed to address the security threats in these WSNs. However, integrating WSNs with the Internet in such a way as to ensure a secure End-to-End (E2E) communication path between IPv6 enabled sensor networks and the Internet remains an open research issue. In this paper, the 6LoWPAN adaptation layer was extended to support both IPsec's Authentication Header (AH) and Encapsulation Security Payload (ESP). Thus, the communication endpoints in WSNs are able to communicate securely using encryption and authentication. The proposed AH and ESP compressed headers performance are evaluated via test-bed implementation in 6LoWPAN for IPv6 communications on IEEE 802.15.4 networks. The results confirm the possibility of implementing E2E security in IPv6 enabled WSNs to create a smooth transition between WSNs and the Internet. This can potentially play a big role in the emerging "Internet of Things" paradigm.
The dazzling emergence of cyber-threats exert today's cyberspace, which needs practical and efficient capabilities for malware traffic detection. In this paper, we propose an extension to an initial research effort, namely, towards fingerprinting malicious traffic by putting an emphasis on the attribution of maliciousness to malware families. The proposed technique in the previous work establishes a synergy between automatic dynamic analysis of malware and machine learning to fingerprint badness in network traffic. Machine learning algorithms are used with features that exploit only high-level properties of traffic packets (e.g. packet headers). Besides, the detection of malicious packets, we want to enhance fingerprinting capability with the identification of malware families responsible in the generation of malicious packets. The identification of the underlying malware family is derived from a sequence of application protocols, which is used as a signature to the family in question. Furthermore, our results show that our technique achieves promising malware family identification rate with low false positives.
The dazzling emergence of cyber-threats exert today's cyberspace, which needs practical and efficient capabilities for malware traffic detection. In this paper, we propose an extension to an initial research effort, namely, towards fingerprinting malicious traffic by putting an emphasis on the attribution of maliciousness to malware families. The proposed technique in the previous work establishes a synergy between automatic dynamic analysis of malware and machine learning to fingerprint badness in network traffic. Machine learning algorithms are used with features that exploit only high-level properties of traffic packets (e.g. packet headers). Besides, the detection of malicious packets, we want to enhance fingerprinting capability with the identification of malware families responsible in the generation of malicious packets. The identification of the underlying malware family is derived from a sequence of application protocols, which is used as a signature to the family in question. Furthermore, our results show that our technique achieves promising malware family identification rate with low false positives.
The dazzling emergence of cyber-threats exert today's cyberspace, which needs practical and efficient capabilities for malware traffic detection. In this paper, we propose an extension to an initial research effort, namely, towards fingerprinting malicious traffic by putting an emphasis on the attribution of maliciousness to malware families. The proposed technique in the previous work establishes a synergy between automatic dynamic analysis of malware and machine learning to fingerprint badness in network traffic. Machine learning algorithms are used with features that exploit only high-level properties of traffic packets (e.g. packet headers). Besides, the detection of malicious packets, we want to enhance fingerprinting capability with the identification of malware families responsible in the generation of malicious packets. The identification of the underlying malware family is derived from a sequence of application protocols, which is used as a signature to the family in question. Furthermore, our results show that our technique achieves promising malware family identification rate with low false positives.
The security issue of complex networks has drawn significant concerns recently. While pure topological analyzes from a network security perspective provide some effective techniques, their inability to characterize the physical principles requires a more comprehensive model to approximate failure behavior of a complex network in reality. In this paper, based on an extended topological metric, we proposed an approach to examine the vulnerability of a specific type of complex network, i.e., the power system, against cascading failure threats. The proposed approach adopts a model called extended betweenness that combines network structure with electrical characteristics to define the load of power grid components. By using this power transfer distribution factor-based model, we simulated attacks on different components (buses and branches) in the grid and evaluated the vulnerability of the system components with an extended topological cascading failure simulator. Influence of different loading and overloading situations on cascading failures was also evaluated by testing different tolerance factors. Simulation results from a standard IEEE 118-bus test system revealed the vulnerability of network components, which was then validated on a dc power flow simulator with comparisons to other topological measurements. Finally, potential extensions of the approach were also discussed to exhibit both utility and challenge in more complex scenarios and applications.
Today's more reliable communication technology, together with the availability of higher computational power, have paved the way for introduction of more advanced automation systems based on distributed intelligence and multi-agent technology. However, abundance of data, while making these systems more powerful, can at the same time act as their biggest vulnerability. In a web of interconnected devices and components functioning within an automation framework, potential impact of malfunction in a single device, either through internal failure or external damage/intrusion, may lead to detrimental side-effects spread across the whole underlying system. The potentially large number of devices, along with their inherent interrelations and interdependencies, may hinder the ability of human operators to interpret events, identify their scope of impact and take remedial actions if necessary. Through utilization of the concepts of graph-theoretic fuzzy cognitive maps (FCM) and expert systems, this paper puts forth a solution that is able to reveal weak links and vulnerabilities of an automation system, should it become exposed to partial internal failure or external damage. A case study has been performed on the IEEE 34-bus test distribution system to show the efficiency of the proposed scheme.
Many surveillance cameras are using everywhere, the videos or images captured by these cameras are still dumped but they are not processed. Many methods are proposed for tracking and detecting the objects in the videos but we need the meaningful content called semantic content from these videos. Detecting Human activity recognition is quite complex. The proposed method called Semantic Content Extraction (SCE) from videos is used to identify the objects and the events present in the video. This model provides useful methodology for intruder detecting systems which provides the behavior and the activities performed by the intruder. Construction of ontology enhances the spatial and temporal relations between the objects or features extracted. Thus proposed system provides a best way for detecting the intruders, thieves and malpractices happening around us.
The success of the IoT world requires service provision attributed with ubiquity, reliability, high-performance, efficiency, and scalability. In order to accomplish this attribution, future business and research vision is to merge the Cloud Computing and IoT concepts, i.e., enable an “Everything as a Service” model: specifically, a Cloud ecosystem, encompassing novel functionality and cognitive-IoT capabilities, will be provided. Hence the paper will describe an innovative IoT centric Cloud smart infrastructure addressing individual IoT and Cloud Computing challenges.
With the rise in the underground Internet economy, automated malicious programs popularly known as malwares have become a major threat to computers and information systems connected to the internet. Properties such as self healing, self hiding and ability to deceive the security devices make these software hard to detect and mitigate. Therefore, the detection and the mitigation of such malicious software is a major challenge for researchers and security personals. The conventional systems for the detection and mitigation of such threats are mostly signature based systems. Major drawback of such systems are their inability to detect malware samples for which there is no signature available in their signature database. Such malwares are known as zero day malware. Moreover, more and more malware writers uses obfuscation technology such as polymorphic and metamorphic, packing, encryption, to avoid being detected by antivirus. Therefore, the traditional signature based detection system is neither effective nor efficient for the detection of zero-day malware. Hence to improve the effectiveness and efficiency of malware detection system we are using classification method based on structural information and behavioral specifications. In this paper we have used both static and dynamic analysis approaches. In static analysis we are extracting the features of an executable file followed by classification. In dynamic analysis we are taking the traces of executable files using NtTrace within controlled atmosphere. Experimental results obtained from our algorithm indicate that our proposed algorithm is effective in extracting malicious behavior of executables. Further it can also be used to detect malware variants.
Game theory can provide a useful tool to study the security problem in mobile ad hoc networks (MANETs). Most of existing works on applying game theories to security only consider two players in the security game model: an attacker and a defender. While this assumption may be valid for a network with centralized administration, it is not realistic in MANETs, where centralized administration is not available. In this paper, using recent advances in mean field game theory, we propose a novel game theoretic approach with multiple players for security in MANETs. The mean field game theory provides a powerful mathematical tool for problems with a large number of players. The proposed scheme can enable an individual node in MANETs to make strategic security defence decisions without centralized administration. In addition, since security defence mechanisms consume precious system resources (e.g., energy), the proposed scheme considers not only the security requirement of MANETs but also the system resources. Moreover, each node in the proposed scheme only needs to know its own state information and the aggregate effect of the other nodes in the MANET. Therefore, the proposed scheme is a fully distributed scheme. Simulation results are presented to illustrate the effectiveness of the proposed scheme.
Cyber systems play a critical role in improving the efficiency and reliability of power system operation and ensuring the system remains within safe operating margins. An adversary can inflict severe damage to the underlying physical system by compromising the control and monitoring applications facilitated by the cyber layer. Protection of critical assets from electronic threats has traditionally been done through conventional cyber security measures that involve host-based and network-based security technologies. However, it has been recognized that highly skilled attacks can bypass these security mechanisms to disrupt the smooth operation of control systems. There is a growing need for cyber-attack-resilient control techniques that look beyond traditional cyber defense mechanisms to detect highly skilled attacks. In this paper, we make the following contributions. We first demonstrate the impact of data integrity attacks on Automatic Generation Control (AGC) on power system frequency and electricity market operation. We propose a general framework to the application of attack resilient control to power systems as a composition of smart attack detection and mitigation. Finally, we develop a model-based anomaly detection and attack mitigation algorithm for AGC. We evaluate the detection capability of the proposed anomaly detection algorithm through simulation studies. Our results show that the algorithm is capable of detecting scaling and ramp attacks with low false positive and negative rates. The proposed model-based mitigation algorithm is also efficient in maintaining system frequency within acceptable limits during the attack period.
A distributed cyber control system comprises various types of assets, including sensors, intrusion detection systems, scanners, controllers, and actuators. The modeling and analysis of these components usually require multi-disciplinary approaches. This paper presents a modeling and dynamic analysis of a distributed cyber control system for situational awareness by taking advantage of control theory and time Petri net. Linear time-invariant systems are used to model the target system, attacks, assets influences, and an anomaly-based intrusion detection system. Time Petri nets are used to model the impact and timing relationships of attacks, vulnerability, and recovery at every node. To characterize those distributed control systems that are perfectly attackable, algebraic and topological attackability conditions are derived. Numerical evaluation is performed to determine the impact of attacks on distributed control system.
A distributed cyber control system comprises various types of assets, including sensors, intrusion detection systems, scanners, controllers, and actuators. The modeling and analysis of these components usually require multi-disciplinary approaches. This paper presents a modeling and dynamic analysis of a distributed cyber control system for situational awareness by taking advantage of control theory and time Petri net. Linear time-invariant systems are used to model the target system, attacks, assets influences, and an anomaly-based intrusion detection system. Time Petri nets are used to model the impact and timing relationships of attacks, vulnerability, and recovery at every node. To characterize those distributed control systems that are perfectly attackable, algebraic and topological attackability conditions are derived. Numerical evaluation is performed to determine the impact of attacks on distributed control system.
Modern cyber systems and their integration with the infrastructure has a clear effect on the productivity and quality of life immensely. Their involvement in our daily life elevate the need for means to insure their resilience against attacks and failure. One major threat is the software monoculture. Latest research work demonstrated the danger of software monoculture and presented diversity to reduce the attack surface. In this paper, we propose ChameleonSoft, a multidimensional software diversity employment to, in effect, induce spatiotemporal software behavior encryption and a moving target defense. ChameleonSoft introduces a loosely coupled, online programmable software-execution foundation separating logic, state and physical resources. The elastic construction of the foundation enabled ChameleonSoft to define running software as a set of behaviorally-mutated functionally-equivalent code variants. ChameleonSoft intelligently Shuffle, at runtime, these variants while changing their physical location inducing untraceable confusion and diffusion enough to encrypt the execution behavior of the running software. ChameleonSoft is also equipped with an autonomic failure recovery mechanism for enhanced resilience. In order to test the applicability of the proposed approach, we present a prototype of the ChameleonSoft Behavior Encryption (CBE) and recovery mechanisms. Further, using analysis and simulation, we study the performance and security aspects of the proposed system. This study aims to assess the provisioned level of security by measuring the avalanche effect percentage and the induced confusion and diffusion levels to evaluate the strength of the CBE mechanism. Further, we compute the computational cost of security provisioning and enhancing system resilience.