Biblio
Modern cyber systems and their integration with the infrastructure has a clear effect on the productivity and quality of life immensely. Their involvement in our daily life elevate the need for means to insure their resilience against attacks and failure. One major threat is the software monoculture. Latest research work demonstrated the danger of software monoculture and presented diversity to reduce the attack surface. In this paper, we propose ChameleonSoft, a multidimensional software diversity employment to, in effect, induce spatiotemporal software behavior encryption and a moving target defense. ChameleonSoft introduces a loosely coupled, online programmable software-execution foundation separating logic, state and physical resources. The elastic construction of the foundation enabled ChameleonSoft to define running software as a set of behaviorally-mutated functionally-equivalent code variants. ChameleonSoft intelligently Shuffle, at runtime, these variants while changing their physical location inducing untraceable confusion and diffusion enough to encrypt the execution behavior of the running software. ChameleonSoft is also equipped with an autonomic failure recovery mechanism for enhanced resilience. In order to test the applicability of the proposed approach, we present a prototype of the ChameleonSoft Behavior Encryption (CBE) and recovery mechanisms. Further, using analysis and simulation, we study the performance and security aspects of the proposed system. This study aims to assess the provisioned level of security by measuring the avalanche effect percentage and the induced confusion and diffusion levels to evaluate the strength of the CBE mechanism. Further, we compute the computational cost of security provisioning and enhancing system resilience.
Wireless mesh networks (WMNs) are attracting more and more real time applications. This kind of applications is constrained in terms of Quality of Service (QoS). Existing works in this area are mostly designed for mobile ad hoc networks, which, unlike WMNs, are mainly sensitive to energy and mobility. However, WMNs have their specific characteristics (e.g. static routers and heavy traffic load), which require dedicated QoS protocols. This paper proposes a novel traffic regulation scheme for multimedia support in WMNs. The proposed scheme aims to regulate the traffic sending rate according to the network state, based on the buffer evolution at mesh routers and on the priority of each traffic type. By monitoring the buffer evolution at mesh routers, our scheme is able to predict possible congestion, or QoS violation, early enough before their occurrence; each flow is then regulated according to its priority and to its QoS requirements. The idea behind the proposed scheme is to maintain lightly loaded buffers in order to minimize the queuing delays, as well as, to avoid congestion. Moreover, the regulation process is made smoothly in order to ensure the continuity of real time and interactive services. We use the interval type-2 fuzzy logic system (IT2 FLS), known by its adequacy to uncertain environments, to make suitable regulation decisions. The performance of our scheme is proved through extensive simulations in different network and traffic load scales.
Watermarking is a recently developed technique which is currently dominating the world of security and digital processing in order to ensure the protection of digitized trade. The purpose of this work is twofold. It is firstly to establish a state of the art that goes through the existing watermarking methods and their performances. And secondly to design, implement and evaluate a new watermarking solution that aims to optimize the compromise robustness-invisibility-capacity. The proposed approach consists on applying a frequency watermarking based on singular value decomposition (SVD) and exploiting the mosaic made from all video frames as well as inserting a double signature in order to increase watermarking algorithm capacity.
Recent advances in adaptive filter theory and the hardware for signal acquisition have led to the realization that purely linear algorithms are often not adequate in these domains. Nonlinearities in the input space have become apparent with today's real world problems. Algorithms that process the data must keep pace with the advances in signal acquisition. Recently kernel adaptive (online) filtering algorithms have been proposed that make no assumptions regarding the linearity of the input space. Additionally, advances in wavelet data compression/dimension reduction have also led to new algorithms that are appropriate for producing a hybrid nonlinear filtering framework. In this paper we utilize a combination of wavelet dimension reduction and kernel adaptive filtering. We derive algorithms in which the dimension of the data is reduced by a wavelet transform. We follow this by kernel adaptive filtering algorithms on the reduced-domain data to find the appropriate model parameters demonstrating improved minimization of the mean-squared error (MSE). Another important feature of our methods is that the wavelet filter is also chosen based on the data, on-the-fly. In particular, it is shown that by using a few optimal wavelet coefficients from the constructed wavelet filter for both training and testing data sets as the input to the kernel adaptive filter, convergence to the near optimal learning curve (MSE) results. We demonstrate these algorithms on simulated and a real data set from food processing.
This paper presents an ontological approach to perceive the current security status of the network. Computer network is a dynamic entity whose state changes with the introduction of new services, installation of new network operating system, and addition of new hardware components, creation of new user roles and by attacks from various actors instigated by aggressors. Various security mechanisms employed in the network does not give the complete picture of security of complete network. In this paper we have proposed taxonomy and ontology which may be used to infer impact of various events happening in the network on security status of the network. Vulnerability, Network and Attack are the main taxonomy classes in the ontology. Vulnerability class describes various types of vulnerabilities in the network which may in hardware components like storage devices, computing devices or networks devices. Attack class has many subclasses like Actor class which is entity executing the attack, Goal class describes goal of the attack, Attack mechanism class defines attack methodology, Scope class describes size and utility of the target, Automation level describes the automation level of the attack Evaluation of security status of the network is required for network security situational awareness. Network class has network operating system, users, roles, hardware components and services as its subclasses. Based on this taxonomy ontology has been developed to perceive network security status. Finally a framework, which uses this ontology as knowledgebase has been proposed.
An integrity checking and recovery (ICAR) system is presented here, which protects file system integrity and automatically restores modified files. The system enables files cryptographic hashes generation and verification, as well as configuration of security constraints. All of the crucial data, including ICAR system binaries, file backups and hashes database are stored in a physically write-protected storage to eliminate the threat of unauthorised modification. A buffering mechanism was designed and implemented in the system to increase operation performance. Additionally, the system supplies user tools for cryptographic hash generation and security database management. The system is implemented as a kernel extension, compliant with the Linux security model. Experimental evaluation of the system was performed and showed an approximate 10% performance degradation in secured file access compared to regular access.
Vehicular ad-hoc networks (VANETs) provides infrastructure less, rapidly deployable, self-configurable network connectivity. The network is the collection vehicles interlinked by wireless links and willing to store and forward data for their peers. As vehicles move freely and organize themselves arbitrarily, message routing is done dynamically based on network connectivity. Compared with other ad-hoc networks, VANETs are particularly challenging due to the part of the vehicles' high rate of mobility and the numerous signal-weakening barrier, such as buildings, in their environments. Due to their enormous potential, VANET have gained an increasing attention in both industry and academia. Research activities range from lower layer protocol design to applications and implementation issues. A secure VANET system, while exchanging information should protect the system against unauthorized message injection, message alteration, eavesdropping. The security of VANET is one of the most critical issues because their information transmission is propagated in open access (wireless) environments. A few years back VANET has received increased attention as the potential technology to enhance active and preventive safety on the road, as well as travel comfort Safekeeping and privacy are mandatory in vehicular communications for a grateful acceptance and use of such technology. This paper is an attempt to highlight the problems occurred in Vehicular Ad hoc Networks and security issues.
In Wireless Mesh Networks (WMNs), Network-Wide Broadcasts (NWBs) are a fundamental operation, required by routing and other mechanisms that distribute information to all nodes in the network. However, due to the characteristics of wireless communication, NWBs are generally problematic. Optimizing them thus is a prime target when improving the overall performance and dependability of WMNs. Most existing optimizations neglect the real nature of WMNs and are based on simple graph models, which provide optimistic assumptions of NWB dissemination. On the other hand, models that fully consider the complex propagation characteristics of NWBs quickly become unsolvable due to their complexity. In this paper, we present the Monte Carlo method Probabilistic Breadth-First Search (PBFS) to approximate the reachability of NWB protocols. PBFS simulates individual NWBs on graphs with probabilistic edge weights, which reflect link qualities of individual wireless links in the WMN, and estimates reachability over a configurable number of simulated runs. This approach is not only more efficient than existing ones, but further provides additional information, such as the distribution of path lengths. Furthermore, it is easily extensible to NWB schemes other than flooding. The applicability of PBFS is validated both theoretically and empirically, in the latter by comparing reachability as calculated by PBFS and measured in a real-world WMN. Validation shows that PBFS quickly converges to the theoretically correct value and approximates the behavior of real-life testbeds very well. The feasibility of PBFS to support research on NWB optimizations or higher level protocols that employ NWBs is demonstrated in two use cases.
The use of side-channel measurements and fingerprinting, in conjunction with statistical analysis, has proven to be the most effective method for accurately detecting hardware Trojans in fabricated integrated circuits. However, these post-fabrication trust evaluation methods overlook the capabilities of advanced design skills that attackers can use in designing sophisticated Trojans. To this end, we have designed a Trojan using power-gating techniques and demonstrate that it can be masked from advanced side-channel fingerprinting detection while dormant. We then propose a real-time trust evaluation framework that continuously monitors the on-board global power consumption to monitor chip trustworthiness. The measurements obtained corroborate our frameworks effectiveness for detecting Trojans. Finally, the results presented are experimentally verified by performing measurements on fabricated Trojan-free and Trojan-infected variants of a reconfigurable linear feedback shift register (LFSR) array.
As the interconnect delay is becoming a larger fraction of the clock cycle time, the conventional global stalling mechanism, which is used to correct error in general synchronous circuits, would be no longer feasible because of the expensive timing cost for the stalling signal to travel across the circuit. In this paper, we propose recovery-based resilient latency-insensitive systems (RLISs) that efficiently integrate error-recovery techniques with latency-insensitive design to replace the global stalling. We first demonstrate a baseline RLIS as the motivation of our work that uses additional output buffer which guarantees that only correct data can enter the output channel. However this baseline RLIS suffers from performance degradations even when errors do not occur. We propose a novel improved RLIS that allows erroneous data to propagate in the system. Equipped with improved queues that prevent accumulation of erroneous data, the improved RLIS retains the system performance. We provide theoretical study that analyzes the impact of errors on system performance and the queue sizing problem. We also theoretically prove that the improved RLIS performs no worse than the global stalling mechanism. Experimental results show that the improved RLIS has 40.3% and even 3.1% throughput improvements compared to the baseline RLIS and the infeasible global stalling mechanism respectively, with less than 10% hardware overhead.
The performance of ad hoc networks depends on the cooperative and trust nature of the distributed nodes. To enhance security in ad hoc networks, it is important to evaluate the trustworthiness of other nodes without central authorities. An information-theoretic framework is presented, to quantitatively measure trust and build a novel trust model (FAPtrust) with multiple trust decision factors. These decision factors are incorporated to reflect trust relationship's complexity and uncertainty in various angles. The weight of these factors is set up using fuzzy analytic hierarchy process theory based on entropy weight method, which makes the model has a better rationality. Moreover, the fuzzy logic rules prediction mechanism is adopted to update a node's trust for future decision-making. As an application of this model, a novel reactive trust-based multicast routing protocol is proposed. This new trusted protocol provides a flexible and feasible approach in routing decision-making, taking into account both the trust constraint and the malicious node detection in multi-agent systems. Comprehensive experiments have been conducted to evaluate the efficiency of trust model and multicast trust enhancement in the improvement of network interaction quality, trust dynamic adaptability, malicious node identification, attack resistance and enhancements of system's security.
Integrated circuits (ICs) are now designed and fabricated in a globalized multivendor environment making them vulnerable to malicious design changes, the insertion of hardware Trojans/malware, and intellectual property (IP) theft. Algorithmic reverse engineering of digital circuits can mitigate these concerns by enabling analysts to detect malicious hardware, verify the integrity of ICs, and detect IP violations. In this paper, we present a set of algorithms for the reverse engineering of digital circuits starting from an unstructured netlist and resulting in a high-level netlist with components such as register files, counters, adders, and subtractors. Our techniques require no manual intervention and experiments show that they determine the functionality of >45% and up to 93% of the gates in each of the test circuits that we examine. We also demonstrate that our algorithms are scalable to real designs by experimenting with a very large, highly-optimized system-on-chip (SOC) design with over 375000 combinational elements. Our inference algorithms cover 68% of the gates in this SOC. We also demonstrate that our algorithms are effective in aiding a human analyst to detect hardware Trojans in an unstructured netlist.
In this paper, we propose SAFE (Security Aware FlexRay scheduling Engine), to provide a problem definition and a design framework for FlexRay static segment schedule to address the new challenge on security. From a high level specification of the application, the architecture and communication middleware are synthesized to satisfy security requirements, in addition to extensibility, costs, and end-to-end latencies. The proposed design process is applied to two industrial case studies consisting of a set of active safety functions and an X-by-wire system respectively.
Privacy preservation is very essential in various real life applications such as medical science and financial analysis. This paper focuses on implementation of an asymmetric secure multi-party computation protocol using anonymization and public-key encryption where all parties have access to trusted third party (TTP) who (1) doesn't add any contribution to computation (2) doesn't know who is the owner of the input received (3) has large number of resources (4) decryption key is known to trusted third party (TTP) to get the actual input for computation of final result. In this environment, concern is to design a protocol which deploys TTP for computation. It is proposed that the protocol is very proficient (in terms of secure computation and individual privacy) for the parties than the other available protocols. The solution incorporates protocol using asymmetric encryption scheme where any party can encrypt a message with the public key but decryption can be done by only the possessor of the decryption key (private key). As the protocol works on asymmetric encryption and packetization it ensures following: (1) Confidentiality (Anonymity) (2) Security (3) Privacy (Data).
Testing for security related issues is an important task of growing interest due to the vast amount of applications and services available over the internet. In practice testing for security often is performed manually with the consequences of higher costs, and no integration of security testing with today's agile software development processes. In order to bring security testing into practice, many different approaches have been suggested including fuzz testing and model-based testing approaches. Most of these approaches rely on models of the system or the application domain. In this paper we suggest to formalize attack patterns from which test cases can be generated and even executed automatically. Hence, testing for known attacks can be easily integrated into software development processes where automated testing, e.g., for daily builds, is a requirement. The approach makes use of UML state charts. Besides discussing the approach, we illustrate the approach using a case study.
Distributed mesh sensor networks provide cost-effective communications for deployment in various smart grid domains, such as home area networks (HAN), neighborhood area networks (NAN), and substation/plant-generation local area networks. This paper introduces a dynamically updating key distribution strategy to enhance mesh network security against cyber attack. The scheme has been applied to two security protocols known as simultaneous authentication of equals (SAE) and efficient mesh security association (EMSA). Since both protocols utilize 4-way handshaking, we propose a Merkle-tree based handshaking scheme, which is capable of improving the resiliency of the network in a situation where an intruder carries a denial of service attack. Finally, by developing a denial of service attack model, we can then evaluate the security of the proposed schemes against cyber attack, as well as network performance in terms of delay and overhead.
We propose a method for analysis of surveillance video by using low rank and sparse decomposition (LRSD) with low latency combined with compressive sensing to segment the background and extract moving objects in a surveillance video. Video is acquired by compressive measurements, and the measurements are used to analyze the video by a low rank and sparse decomposition of a matrix. The low rank component represents the background, and the sparse component, which is obtained in a tight wavelet frame domain, is used to identify moving objects in the surveillance video. An important feature of the proposed low latency method is that the decomposition can be performed with a small number of video frames, which reduces latency in the reconstruction and makes it possible for real time processing of surveillance video. The low latency method is both justified theoretically and validated experimentally.
Wireless Sensor Networks (WSNs) are used in many applications in military, environmental, and health-related areas. These applications often include the monitoring of sensitive information such as enemy movement on the battlefield or the location of personnel in a building. Security is important in WSNs. However, WSNs suffer from many constraints, including low computation capability, small memory, limited energy resources, susceptibility to physical capture, and the use of insecure wireless communication channels. These constraints make security in WSNs a challenge. In this paper, we try to explore security issue in WSN. First, the constraints, security requirements and attacks with their corresponding countermeasures in WSNs are explained. Individual sensor nodes are subject to compromised security. An adversary can inject false reports into the networks via compromised nodes. Furthermore, an adversary can create a Gray hole by compromised nodes. If these two kinds of attacks occur simultaneously in a network, some of the existing methods fail to defend against those attacks. The Ad-hoc On Demand Distance (AODV) Vector scheme for detecting Gray-Hole attack and Statistical En-Route Filtering is used for detecting false report. For increasing security level, the Elliptic Curve Cryptography (ECC) algorithm is used. Simulations results obtain so far reduces energy consumption and also provide greater network security to some extent.
The Communities vary from country to country. There are civil societies and rural communities, which also differ in terms of geography climate and economy. This shows that the use of social networks vary from region to region depending on the demographics of the communities. So, in this paper, we researched the most important problems of the Social Network, as well as the risk which is based on the human elements. We raised the problems of social networks in the transformation of societies to another affected by the global economy. The social networking integration needs to strengthen social ties that lead to the existence of these problems. For this we focused on the Internet security risks over the social networks. And study on Risk Management, and then look at resolving various problems that occur from the use of social networks.
Mobile Ad-hoc Network is highly susceptible towards the security attacks due to its dynamic topology, resource constraint, energy constraint operations, limited physical security and lack of infrastructure. Misleading routing attack (MIRA) in MANET intend to delay packet to its fullest in order to generate time outs at the source as packets will not reach in time. Its main objective is to generate delay and increase network overhead. It is a variation to the sinkhole attack. In this paper, we have proposed a detection scheme to detect the malicious nodes at route discovery as well as at packet transmissions. The simulation results of MIRA attack indicate that though delay is increased by 91.30% but throughput is not affected which indicates that misleading routing attack is difficult to detect. The proposed detection scheme when applied to misleading routing attack suggests a significant decrease in delay.
Technical Report SS-14-02, ``Formal Verification and Modeling in Human-Machine Systems''
Although current Internet operations generate voluminous data, they remain largely oblivious of traffic data semantics. This poses many inefficiencies and challenges due to emergent or anomalous behavior impacting the vast array of Internet elements such as services and protocols. In this paper, we propose a Data Semantics Management System (DSMS) for learning Internet traffic data semantics to enable smarter semantics- driven networking operations. We extract networking semantics and build and utilize a dynamic ontology of network concepts to better recognize and act upon emergent or abnormal behavior. Our DSMS utilizes: (1) Latent Dirichlet Allocation algorithm (LDA) for latent features extraction and semantics reasoning; (2) big tables as a cloud-like data storage technique to maintain large-scale data; and (3) Locality Sensitive Hashing algorithm (LSH) for reducing data dimensionality. Our preliminary evaluation using real Internet traffic shows the efficacy of DSMS for learning behavior of normal and abnormal traffic data and for accurately detecting anomalies at low cost.
Applications such as fleet management and logistics, emergency response, public security and surveillance or mobile workforce management use geo-positioning and mobile networks as means of enabling real-time monitoring, communication and collaboration among a possibly large set of mobile nodes. The majority of those systems require real-time tracking of mobile nodes (e.g. vehicles, people or mobile robots), reliable communication to/from the nodes, as well as group communication among the mobile nodes. In this paper we describe a distributed middleware with focus on management of context-defined groups of mobile nodes, and group communication with large sets of nodes. We also present a prototype Fleet Tracking and Management system based on our middleware, give an example of how context-specific group communication can enhance the node's mutual awareness, and show initial performance results that indicate small overhead and latency of the group communication and management.
As multi-tenant authorization and federated identity management systems for cloud computing matures, the provisioning of services using this paradigm allows maximum efficiency on business that requires access control. However, regarding scalability support, mainly horizontal, some characteristics of those approaches based on central authentication protocols are problematic. The objective of this work is to address these issues by providing an adapted sticky-session mechanism for a Shibboleth architecture using CAS. This alternative, compared with the recommended shared memory approach, shown improved efficiency and less overall infrastructure complexity.
As multi-tenant authorization and federated identity management systems for cloud computing matures, the provisioning of services using this paradigm allows maximum efficiency on business that requires access control. However, regarding scalability support, mainly horizontal, some characteristics of those approaches based on central authentication protocols are problematic. The objective of this work is to address these issues by providing an adapted sticky-session mechanism for a Shibboleth architecture using CAS. This alternative, compared with the recommended shared memory approach, shown improved efficiency and less overall infrastructure complexity.