Biblio

Found 19604 results

2015-04-30
Fei Hao, Geyong Min, Man Lin, Changqing Luo, Yang, L.T..  2014.  MobiFuzzyTrust: An Efficient Fuzzy Trust Inference Mechanism in Mobile Social Networks. Parallel and Distributed Systems, IEEE Transactions on. 25:2944-2955.

Mobile social networks (MSNs) facilitate connections between mobile users and allow them to find other potential users who have similar interests through mobile devices, communicate with them, and benefit from their information. As MSNs are distributed public virtual social spaces, the available information may not be trustworthy to all. Therefore, mobile users are often at risk since they may not have any prior knowledge about others who are socially connected. To address this problem, trust inference plays a critical role for establishing social links between mobile users in MSNs. Taking into account the nonsemantical representation of trust between users of the existing trust models in social networks, this paper proposes a new fuzzy inference mechanism, namely MobiFuzzyTrust, for inferring trust semantically from one mobile user to another that may not be directly connected in the trust graph of MSNs. First, a mobile context including an intersection of prestige of users, location, time, and social context is constructed. Second, a mobile context aware trust model is devised to evaluate the trust value between two mobile users efficiently. Finally, the fuzzy linguistic technique is used to express the trust between two mobile users and enhance the human's understanding of trust. Real-world mobile dataset is adopted to evaluate the performance of the MobiFuzzyTrust inference mechanism. The experimental results demonstrate that MobiFuzzyTrust can efficiently infer trust with a high precision.

2015-05-05
Min Li, Xin Lv, Wei Song, Wenhuan Zhou, Rongzhi Qi, Huaizhi Su.  2014.  A Novel Identity Authentication Scheme of Wireless Mesh Network Based on Improved Kerberos Protocol. Distributed Computing and Applications to Business, Engineering and Science (DCABES), 2014 13th International Symposium on. :190-194.

The traditional Kerberos protocol exists some limitations in achieving clock synchronization and storing key, meanwhile, it is vulnerable from password guessing attack and attacks caused by malicious software. In this paper, a new authentication scheme is proposed for wireless mesh network. By utilizing public key encryption techniques, the security of the proposed scheme is enhanced. Besides, timestamp in the traditional protocol is replaced by random numbers to implementation cost. The analysis shows that the improved authentication protocol is fit for wireless Mesh network, which can make identity authentication more secure and efficient.

Yongle Hao, Yizhen Jia, Baojiang Cui, Wei Xin, Dehu Meng.  2014.  OpenSSL HeartBleed: Security Management of Implements of Basic Protocols. P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC), 2014 Ninth International Conference on. :520-524.

With the rapid development of information technology, information security management is ever more important. OpenSSL security incident told us, there's distinct disadvantages of security management of current hierarchical structure, the software and hardware facilities are necessary to enforce security management on their implements of crucial basic protocols, in order to ease the security threats against the facilities in a certain extent. This article expounded cross-layer security management and enumerated 5 contributory factors for the core problems that management facing to.
 

2015-05-04
Chang-Ji Wang, Dong-Yuan Shi, Xi-Lei Xu.  2014.  Pseudonym-Based Cryptography and Its Application in Vehicular Ad Hoc Networks. Broadband and Wireless Computing, Communication and Applications (BWCCA), 2014 Ninth International Conference on. :253-260.

As the cornerstone of the future intelligent transportation system, vehicular ad hoc networks (VANETs) have attracted intensive attention from the academic and industrial research communities in recent years. For widespread deployment of VANETs, security and privacy issues must be addressed properly. In this paper, we introduce the notion of pseudonym-based cryptography, and present a provable secure pseudonym-based cryptosystems with a trusted authority that includes a pseudonym-based multi-receiver encryption scheme, a pseudonym-based signature scheme, and a pseudonym-based key establishment protocol. We then propose a secure and efficient data access scheme for VANETs based on cooperative caching technology and our proposed pseudonym-based cryptosystems. On the one hand, the efficiency of data access are greatly improved by allowing the sharing and coordination of cached data among multiple vehicles. On the other hand, anonymity of the vehicles, data confidentiality, integrity and non-repudiation are guaranteed by employing our proposed pseudonym-based cryptosystems. Simulation results have shown that our proposed pseudonym-based cryptosystems are suitable to the VANETs environment.

2015-05-05
Xinyi Huang, Yang Xiang, Bertino, E., Jianying Zhou, Li Xu.  2014.  Robust Multi-Factor Authentication for Fragile Communications. Dependable and Secure Computing, IEEE Transactions on. 11:568-581.

In large-scale systems, user authentication usually needs the assistance from a remote central authentication server via networks. The authentication service however could be slow or unavailable due to natural disasters or various cyber attacks on communication channels. This has raised serious concerns in systems which need robust authentication in emergency situations. The contribution of this paper is two-fold. In a slow connection situation, we present a secure generic multi-factor authentication protocol to speed up the whole authentication process. Compared with another generic protocol in the literature, the new proposal provides the same function with significant improvements in computation and communication. Another authentication mechanism, which we name stand-alone authentication, can authenticate users when the connection to the central server is down. We investigate several issues in stand-alone authentication and show how to add it on multi-factor authentication protocols in an efficient and generic way.

2015-05-06
Zhexiong Wei, Tang, H., Yu, F.R., Maoyu Wang, Mason, P..  2014.  Security Enhancements for Mobile Ad Hoc Networks With Trust Management Using Uncertain Reasoning. Vehicular Technology, IEEE Transactions on. 63:4647-4658.

The distinctive features of mobile ad hoc networks (MANETs), including dynamic topology and open wireless medium, may lead to MANETs suffering from many security vulnerabilities. In this paper, using recent advances in uncertain reasoning that originated from the artificial intelligence community, we propose a unified trust management scheme that enhances the security in MANETs. In the proposed trust management scheme, the trust model has two components: trust from direct observation and trust from indirect observation. With direct observation from an observer node, the trust value is derived using Bayesian inference, which is a type of uncertain reasoning when the full probability model can be defined. On the other hand, with indirect observation, which is also called secondhand information that is obtained from neighbor nodes of the observer node, the trust value is derived using the Dempster-Shafer theory (DST), which is another type of uncertain reasoning when the proposition of interest can be derived by an indirect method. By combining these two components in the trust model, we can obtain more accurate trust values of the observed nodes in MANETs. We then evaluate our scheme under the scenario of MANET routing. Extensive simulation results show the effectiveness of the proposed scheme. Specifically, throughput and packet delivery ratio (PDR) can be improved significantly with slightly increased average end-to-end delay and overhead of messages.

Gazzarata, R., Vergari, F., Cinotti, T.S., Giacomini, M..  2014.  A Standardized SOA for Clinical Data Interchange in a Cardiac Telemonitoring Environment. Biomedical and Health Informatics, IEEE Journal of. 18:1764-1774.

Care of chronic cardiac patients requires information interchange between patients' homes, clinical environments, and the electronic health record. Standards are emerging to support clinical information collection, exchange and management and to overcome information fragmentation and actors delocalization. Heterogeneity of information sources at patients' homes calls for open solutions to collect and accommodate multidomain information, including environmental data. Based on the experience gained in a European Research Program, this paper presents an integrated and open approach for clinical data interchange in cardiac telemonitoring applications. This interchange is supported by the use of standards following the indications provided by the national authorities of the countries involved. Taking into account the requirements provided by the medical staff involved in the project, the authors designed and implemented a prototypal middleware, based on a service-oriented architecture approach, to give a structured and robust tool to congestive heart failure patients for their personalized telemonitoring. The middleware is represented by a health record management service, whose interface is compliant to the healthcare services specification project Retrieve, Locate and Update Service standard (Level 0), which allows communication between the agents involved through the exchange of Clinical Document Architecture Release 2 documents. Three performance tests were carried out and showed that the prototype completely fulfilled all requirements indicated by the medical staff; however, certain aspects, such as authentication, security and scalability, should be deeply analyzed within a future engineering phase.
 

2015-05-05
Kaci, A., Kamwa, I., Dessaint, L.A., Guillon, S..  2014.  Synchrophasor Data Baselining and Mining for Online Monitoring of Dynamic Security Limits. Power Systems, IEEE Transactions on. 29:2681-2695.

When the system is in normal state, actual SCADA measurements of power transfers across critical interfaces are continuously compared with limits determined offline and stored in look-up tables or nomograms in order to assess whether the network is secure or insecure and inform the dispatcher to take preventive action in the latter case. However, synchrophasors could change this paradigm by enabling new features, the phase-angle differences, which are well-known measures of system stress, with the added potential to increase system visibility. The paper develops a systematic approach to baseline the phase-angles versus actual transfer limits across system interfaces and enable synchrophasor-based situational awareness (SBSA). Statistical methods are first used to determine seasonal exceedance levels of angle shifts that can allow real-time scoring and detection of atypical conditions. Next, key buses suitable for SBSA are identified using correlation and partitioning around medoid (PAM) clustering. It is shown that angle shifts of this subset of 15% of the network backbone buses can be effectively used as features in ensemble decision tree-based forecasting of seasonal security margins across critical interfaces.
 

2015-05-04
Kreutz, D., Bessani, A., Feitosa, E., Cunha, H..  2014.  Towards Secure and Dependable Authentication and Authorization Infrastructures. Dependable Computing (PRDC), 2014 IEEE 20th Pacific Rim International Symposium on. :43-52.

We propose a resilience architecture for improving the security and dependability of authentication and authorization infrastructures, in particular the ones based on RADIUS and OpenID. This architecture employs intrusion-tolerant replication, trusted components and entrusted gateways to provide survivable services ensuring compatibility with standard protocols. The architecture was instantiated in two prototypes, one implementing RADIUS and another implementing OpenID. These prototypes were evaluated in fault-free executions, under faults, under attack, and in diverse computing environments. The results show that, beyond being more secure and dependable, our prototypes are capable of achieving the performance requirements of enterprise environments, such as IT infrastructures with more than 400k users.
 

2017-10-27
Aron Laszka, Gabor Horvath, Mark Felegyhazi, Levente Buttyan.  2014.  FlipThem: Modeling Targeted Attacks with FlipIt for Multiple Resources. 5th Conference on Decision and Game Theory for Security (GameSec).
Recent high-profile targeted attacks showed that even the most secure and secluded networks can be compromised by motivated and resourceful attackers, and that such a system compromise may not be immediately detected by the system owner. Researchers at RSA proposed the FlipIt game to study the impact of such stealthy takeovers. In the basic FlipIt game, an attacker and a defender fight over a single resource; in practice, however, systems typically consist of multiple resources that can be targeted. In this paper, we present FlipThem, a generalization of FlipIt to multiple resources. To formulate the players' goals and study their best strategies, we introduce two control models: in the AND model, the attacker has to compromise all resources in order to take over the entire system, while in the OR model, she has to compromise only one. Our analytical and numerical results provide practical recommendations for defenders.
2017-05-18
Ananth, Prabhanjan, Gupta, Divya, Ishai, Yuval, Sahai, Amit.  2014.  Optimizing Obfuscation: Avoiding Barrington's Theorem. Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security. :646–658.

In this work, we seek to optimize the efficiency of secure general-purpose obfuscation schemes. We focus on the problem of optimizing the obfuscation of Boolean formulas and branching programs – this corresponds to optimizing the "core obfuscator" from the work of Garg, Gentry, Halevi, Raykova, Sahai, and Waters (FOCS 2013), and all subsequent works constructing general-purpose obfuscators. This core obfuscator builds upon approximate multilinear maps, where efficiency in proposed instantiations is closely tied to the maximum number of "levels" of multilinearity required. The most efficient previous construction of a core obfuscator, due to Barak, Garg, Kalai, Paneth, and Sahai (Eurocrypt 2014), required the maximum number of levels of multilinearity to be O(l s3.64), where s is the size of the Boolean formula to be obfuscated, and l s is the number of input bits to the formula. In contrast, our construction only requires the maximum number of levels of multilinearity to be roughly l s, or only s when considering a keyed family of formulas, namely a class of functions of the form fz(x)=phi(z,x) where phi is a formula of size s. This results in significant improvements in both the total size of the obfuscation and the running time of evaluating an obfuscated formula. Our efficiency improvement is obtained by generalizing the class of branching programs that can be directly obfuscated. This generalization allows us to achieve a simple simulation of formulas by branching programs while avoiding the use of Barrington's theorem, on which all previous constructions relied. Furthermore, the ability to directly obfuscate general branching programs (without bootstrapping) allows us to efficiently apply our construction to natural function classes that are not known to have polynomial-size formulas.

2015-05-04
Hongbo Liu, Jie Yang, Sidhom, S., Yan Wang, YingYing Chen, Fan Ye.  2014.  Accurate WiFi Based Localization for Smartphones Using Peer Assistance. Mobile Computing, IEEE Transactions on. 13:2199-2214.

Highly accurate indoor localization of smartphones is critical to enable novel location based features for users and businesses. In this paper, we first conduct an empirical investigation of the suitability of WiFi localization for this purpose. We find that although reasonable accuracy can be achieved, significant errors (e.g., 6 8m) always exist. The root cause is the existence of distinct locations with similar signatures, which is a fundamental limit of pure WiFi-based methods. Inspired by high densities of smartphones in public spaces, we propose a peer assisted localization approach to eliminate such large errors. It obtains accurate acoustic ranging estimates among peer phones, then maps their locations jointly against WiFi signature map subjecting to ranging constraints. We devise techniques for fast acoustic ranging among multiple phones and build a prototype. Experiments show that it can reduce the maximum and 80-percentile errors to as small as 2m and 1m, in time no longer than the original WiFi scanning, with negligible impact on battery lifetime.

2015-05-06
Thu Trang Le, Atto, A.M., Trouvé, E., Nicolas, J.-M..  2014.  Adaptive Multitemporal SAR Image Filtering Based on the Change Detection Matrix. Geoscience and Remote Sensing Letters, IEEE. 11:1826-1830.

This letter presents an adaptive filtering approach of synthetic aperture radar (SAR) image times series based on the analysis of the temporal evolution. First, change detection matrices (CDMs) containing information on changed and unchanged pixels are constructed for each spatial position over the time series by implementing coefficient of variation (CV) cross tests. Afterward, the CDM provides for each pixel in each image an adaptive spatiotemporal neighborhood, which is used to derive the filtered value. The proposed approach is illustrated on a time series of 25 ascending TerraSAR-X images acquired from November 6, 2009 to September 25, 2011 over the Chamonix-Mont-Blanc test-site, which includes different kinds of change, such as parking occupation, glacier surface evolution, etc.

2015-05-04
Tianyu Zhao, Chang Chen, Lingbo Wei, Mengke Yu.  2014.  An anonymous payment system to protect the privacy of electric vehicles. Wireless Communications and Signal Processing (WCSP), 2014 Sixth International Conference on. :1-6.


Electric vehicle is the automobile that powered by electrical energy stored in batteries. Due to the frequent recharging, vehicles need to be connected to the recharging infrastructure while they are parked. This may disclose drivers' privacy, such as their location that drivers may want to keep secret. In this paper, we propose a scheme to enhance the privacy of the drivers using anonymous credential technique and Trusted Platform Module(TPM). We use anonymous credential technique to achieve the anonymity of vehicles such that drivers can anonymously and unlinkably recharge their vehicles. We add some attributes to the credential such as the type of the battery in the vehicle in case that the prices of different batteries are different. We use TPM to omit a blacklist such that the company that offer the recharging service(Energy Provider Company, EPC) does not need to conduct a double spending detection.
 

2015-05-05
Ling-Xi Peng, Tian-Wei Chen.  2014.  Automated Intrusion Response System Algorithm with Danger Theory. Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC), 2014 International Conference on. :31-34.

Intrusion response is a new generation of technology basing on active defence idea, which has very prominent significance on the protection of network security. However, the existing automatic intrusion response systems are difficult to judge the real "danger" of invasion or attack. In this study, an immune-inspired adaptive automated intrusion response system model, named as AIAIM, was given. With the descriptions of self, non-self, memory detector, mature detector and immature detector of the network transactions, the real-time network danger evaluation equations of host and network are built up. Then, the automated response polices are taken or adjusted according to the real-time danger and attack intensity, which not only solve the problem that the current automated response system models could not detect the true intrusions or attack actions, but also greatly reduce the response times and response costs. Theory analysis and experimental results prove that AIAIM provides a positive and active network security method, which will help to overcome the limitations of traditional passive network security system.
 

2018-05-25
V. Martin, A. Coulaby, N. Schaff, C. C. Tan, S. Lin.  2014.  Bandwidth Prediction on a WiMAX Network. 2014 IEEE 11th International Conference on Mobile Ad Hoc and Sensor Systems. :708-713.
2015-05-04
Toukabri, T., Said, A.M., Abd-Elrahman, E., Afifi, H..  2014.  Cellular Vehicular Networks (CVN): ProSe-Based ITS in Advanced 4G Networks. Mobile Ad Hoc and Sensor Systems (MASS), 2014 IEEE 11th International Conference on. :527-528.

LTE-based Device-to-Device (D2D) communications have been envisioned as a new key feature for short range wireless communications in advanced and beyond 4G networks. We propose in this work to exploit this novel concept of D2D as a new alternative for Intelligent Transportation Systems (ITS) Vehicle-to-Vehicle/Infrastructure (V2X) communications in next generation cellular networks. A 3GPP standard architecture has been recently defined to support Proximity Services (ProSe) in the LTE core network. Taking into account the limitations of this latter and the requirements of ITS services and V2X communications, we propose the CVN solution as an enhancement to the ProSe architecture in order to support hyper-local ITS services. CVN provides a reliable and scalable LTE-assisted opportunistic model for V2X communications through a distributed ProSe architecture. Using a hybrid clustering approach, vehicles are organized into dynamic clusters that are formed and managed by ProSe Cluster Heads which are elected centrally by the CVN core network. ITS services are deemed as Proximity Services and benefit from the basic ProSe discovery, authorization and authentication mechanisms. The CVN solution enhances V2V communication delays and overhead by reducing the need for multi-hop geo-routing. Preliminary simulation results show that the CVN solution provides short setup times and improves ITS communication delays.
 

Okuno, S., Asai, H., Yamana, H..  2014.  A challenge of authorship identification for ten-thousand-scale microblog users. Big Data (Big Data), 2014 IEEE International Conference on. :52-54.

Internet security issues require authorship identification for all kinds of internet contents; however, authorship identification for microblog users is much harder than other documents because microblog texts are too short. Moreover, when the number of candidates becomes large, i.e., big data, it will take long time to identify. Our proposed method solves these problems. The experimental results show that our method successfully identifies the authorship with 53.2% of precision out of 10,000 microblog users in the almost half execution time of previous method.
 

2015-05-05
Gregr, M., Veda, M..  2014.  Challenges with Transition and User Accounting in Next Generation Networks. Network Protocols (ICNP), 2014 IEEE 22nd International Conference on. :501-503.

Future networks may change the way how network administrators monitor and account their users. History shows that usually a completely new design (clean slate) is used to propose a new network architecture - e.g. Network Control Protocol to TCP/IP, IPv4 to IPv6 or IP to Recursive Inter Network Architecture. The incompatibility between these architectures changes the user accounting process as network administrators have to use different information to identify a user. The paper presents a methodology how it is possible to gather all necessary information needed for smooth transition between two incompatible architectures. The transition from IPv4 and IPv6 is used as a use case, but it should be able to use the same process with any new networking architecture.
 

2015-04-30
Ormrod, D..  2014.  The Coordination of Cyber and Kinetic Deception for Operational Effect: Attacking the C4ISR Interface. Military Communications Conference (MILCOM), 2014 IEEE. :117-122.

Modern military forces are enabled by networked command and control systems, which provide an important interface between the cyber environment, electronic sensors and decision makers. However these systems are vulnerable to cyber attack. A successful cyber attack could compromise data within the system, leading to incorrect information being utilized for decisions with potentially catastrophic results on the battlefield. Degrading the utility of a system or the trust a decision maker has in their virtual display may not be the most effective means of employing offensive cyber effects. The coordination of cyber and kinetic effects is proposed as the optimal strategy for neutralizing an adversary's C4ISR advantage. However, such an approach is an opportunity cost and resource intensive. The adversary's cyber dependence can be leveraged as a means of gaining tactical and operational advantage in combat, if a military force is sufficiently trained and prepared to attack the entire information network. This paper proposes a research approach intended to broaden the understanding of the relationship between command and control systems and the human decision maker, as an interface for both cyber and kinetic deception activity.

2015-05-05
Farag, M.M., Azab, M., Mokhtar, B..  2014.  Cross-layer security framework for smart grid: Physical security layer. Innovative Smart Grid Technologies Conference Europe (ISGT-Europe), 2014 IEEE PES. :1-7.

Security is a major challenge preventing wide deployment of the smart grid technology. Typically, the classical power grid is protected with a set of isolated security tools applied to individual grid components and layers ignoring their cross-layer interaction. Such an approach does not address the smart grid security requirements because usually intricate attacks are cross-layer exploiting multiple vulnerabilities at various grid layers and domains. We advance a conceptual layering model of the smart grid and a high-level overview of a security framework, termed CyNetPhy, towards enabling cross-layer security of the smart grid. CyNetPhy tightly integrates and coordinates between three interrelated, and highly cooperative real-time security systems crossing section various layers of the grid cyber and physical domains to simultaneously address the grid's operational and security requirements. In this article, we present in detail the physical security layer (PSL) in CyNetPhy. We describe an attack scenario raising the emerging hardware Trojan threat in process control systems (PCSes) and its novel PSL resolution leveraging the model predictive control principles. Initial simulation results illustrate the feasibility and effectiveness of the PSL.
 

2015-05-04
Marghescu, A., Teseleanu, G., Svasta, P..  2014.  Cryptographic key generator candidates based on smartphone built-in sensors. Design and Technology in Electronic Packaging (SIITME), 2014 IEEE 20th International Symposium for. :239-243.

Random numbers represent one of the most sensible part of a cryptographic system, since the cryptographic keys must be entirely based on them. The security of a communication relies on the key that had been established between two users. If an attacker is able to deduce that key, the communication is compromised. This is why key generation must completely rely on random number generators, so that nobody can deduce the. This paper will describe a set of public and free Random Number Generators (RNG) within Android-based Smartphones by exploiting different sensors, along with the way of achieving this scope. Moreover, this paper will present some conclusive tests and results over them.
 

2015-05-05
Torrieri, D..  2014.  Cyber Maneuvers and Maneuver Keys. Military Communications Conference (MILCOM), 2014 IEEE. :262-267.

This paper presents an overview of cyber maneuvers and their roles in cyber security. As the cyber war escalates, a strategy that preemptively limits and curtails attacks is required. Such a proactive strategy is called a cyber maneuver and is a refinement of the concept of a moving-target defense, which includes both reactive and proactive network changes. The major advantages of cyber maneuvers relative to other moving-target defenses are described. The use of maneuver keys in making cyber maneuvers much more feasible and affordable is explained. As specific examples, the applications of maneuver keys in encryption algorithms and as spread-spectrum keys are described. The integration of cyber maneuvers into a complete cyber security system with intrusion detection, identification of compromised nodes, and secure rekeying is presented. An example of secure rekeying despite the presence of compromised nodes is described.
 

2018-05-27
M. Suresh, U. Manohary, A. G. Ry, R. Stoleru, M. K. M. Sy.  2014.  A cyber-physical system for continuous monitoring of Water Distribution Systems. 2014 IEEE 10th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob). :570-577.
2015-05-05
Moody, W.C., Hongxin Hu, Apon, A..  2014.  Defensive maneuver cyber platform modeling with Stochastic Petri Nets. Collaborative Computing: Networking, Applications and Worksharing (CollaborateCom), 2014 International Conference on. :531-538.

Distributed and parallel applications are critical information technology systems in multiple industries, including academia, military, government, financial, medical, and transportation. These applications present target rich environments for malicious attackers seeking to disrupt the confidentiality, integrity and availability of these systems. Applying the military concept of defense cyber maneuver to these systems can provide protection and defense mechanisms that allow survivability and operational continuity. Understanding the tradeoffs between information systems security and operational performance when applying maneuver principles is of interest to administrators, users, and researchers. To this end, we present a model of a defensive maneuver cyber platform using Stochastic Petri Nets. This model enables the understanding and evaluation of the costs and benefits of maneuverability in a distributed application environment, specifically focusing on moving target defense and deceptive defense strategies.