Biblio

Filters: Author is Aron Laszka  [Clear All Filters]
2019-05-31
2019-05-29
Amin Ghafouri, Xenofon Koutsoukos, Yevgeniy Vorobeychik, Waseem Abbas, Aron Laszka.  2019.  A game-theoretic approach for selecting optimal time-dependent thresholds for anomaly detection. International Foundation for Autonomous Agents and Multi-Agent Systems Journal. 33

Adversaries may cause significant damage to smart infrastructure using malicious attacks. To detect and mitigate these attacks before they can cause physical damage, operators can deploy anomaly detection systems (ADS), which can alarm operators to suspicious activities. However, detection thresholds of ADS need to be configured properly, as an oversensitive detector raises a prohibitively large number of false alarms, while an undersensitive detector may miss actual attacks. This is an especially challenging problem in dynamical environments, where the impact of attacks may significantly vary over time. Using a game-theoretic approach, we formulate the problem of computing optimal detection thresholds which minimize both the number of false alarms and the probability of missing actual attacks as a two-player Stackelberg security game. We provide an efficient dynamic programming-based algorithm for solving the game, thereby finding optimal detection thresholds. We analyze the performance of the proposed algorithm and show that its running time scales polynomially as the length of the time horizon of interest increases. In addition, we study the problem of finding optimal thresholds in the presence of both random faults and attacks. Finally, we evaluate our result using a case study of contamination attacks in water networks, and show that our optimal thresholds significantly outperform fixed thresholds that do not consider that the environment is dynamical.

2018-10-09
Aron Laszka, Waseem Abbas, Yevgeniy Vorobeychik, Xenofon Koutsoukos.  2018.  Synergistic Security for the Industrial Internet of Things: Integrating Redundancy, Diversity, and Hardening.

As the Industrial Internet of Things (IIot) becomes more prevalent in critical application domains, ensuring security and resilience in the face of cyber-attacks is becoming an issue of paramount importance. Cyber-attacks against critical infrastructures, for example, against smart water-distribution and transportation systems, pose serious threats to public health and safety. Owing to the severity of these threats, a variety of security techniques are available. However, no single technique can address the whole spectrum of cyber-attacks that may be launched by a determined and resourceful attacker. In light of this, we consider a multi-pronged approach for designing secure and resilient IIoT systems, which integrates redundancy, diversity, and hardening techniques. We introduce a framework for quantifying cyber-security risks and optimizing IIoT design by determining security investments in redundancy, diversity, and hardening. To demonstrate the applicability of our framework, we present two case studies in water distribution and transportation a case study in water-distribution systems. Our numerical evaluation shows that integrating redundancy, diversity, and hardening can lead to reduced security risk at the same cost.

2019-05-30
Amin Ghafouri, Aron Laszka, Xenofon Koutsoukos.  2018.  Application-Aware Anomaly Detection of Sensor Measurements in Cyber-Physical Systems. Sensors. 18:2448.

Detection errors such as false alarms and undetected faults are inevitable in any practical anomaly detection system. These errors can create potentially significant problems in the underlying application. In particular, false alarms can result in performing unnecessary recovery actions while missed detections can result in failing to perform recovery which can lead to severe consequences. In this paper, we present an approach for application-aware anomaly detection (AAAD). Our approach takes an existing anomaly detector and configures it to minimize the impact of detection errors. The configuration of the detectors is chosen so that application performance in the presence of detection errors is as close as possible to the performance that could have been obtained if there were no detection errors. We evaluate our result using a case study of real-time control of traffic signals, and show that the approach outperforms significantly several baseline detectors.

Waseem Abbas, Aron Laszka, Xenofon Koutsoukos.  2018.  Improving Network Connectivity and Robustness Using Trusted Nodes With Application to Resilient Consensus. IEEE Transactions on Control of Network Systems. 5:2036-2048.

To observe and control a networked system, especially in failure-prone circumstances, it is imperative that the underlying network structure be robust against node or link failures. A common approach for increasing network robustness is redundancy: deploying additional nodes and establishing new links between nodes, which could be prohibitively expensive. This paper addresses the problem of improving structural robustness of networks without adding extra links. The main idea is to ensure that a small subset of nodes, referred to as the trusted nodes, remains intact and functions correctly at all times. We extend two fundamental metrics of structural robustness with the notion of trusted nodes, network connectivity, and r-robustness, and then show that by controlling the number and location of trusted nodes, any desired connectivity and robustness can be achieved without adding extra links. We study the complexity of finding trusted nodes and construction of robust networks with trusted nodes. Finally, we present a resilient consensus algorithm with trusted nodes and show that, unlike existing algorithms, resilient consensus is possible in sparse networks containing few trusted nodes.

Xenofon Koutsoukos, Gabor Karsai, Aron Laszka, Himanshu Neema, Bradley Potteiger, Peter Volgyesi, Yevgeniy Vorobeychik, Janos Sztipanovits.  2018.  SURE: A Modeling and Simulation Integration Platform for Evaluation of Secure and Resilient Cyber–Physical Systems. Proceedings of the IEEE. 106:93-112.

The exponential growth of information and communication technologies have caused a profound shift in the way humans engineer systems leading to the emergence of closed-loop systems involving strong integration and coordination of physical and cyber components, often referred to as cyber-physical systems (CPSs). Because of these disruptive changes, physical systems can now be attacked through cyberspace and cyberspace can be attacked through physical means. The paper considers security and resilience as system properties emerging from the intersection of system dynamics and the computing architecture. A modeling and simulation integration platform for experimentation and evaluation of resilient CPSs is presented using smart transportation systems as the application domain. Evaluation of resilience is based on attacker-defender games using simulations of sufficient fidelity. The platform integrates 1) realistic models of cyber and physical components and their interactions; 2) cyber attack models that focus on the impact of attacks to CPS behavior and operation; and 3) operational scenarios that can be used for evaluation of cybersecurity risks. Three case studies are presented to demonstrate the advantages of the platform: 1) vulnerability analysis of transportation networks to traffic signal tampering; 2) resilient sensor selection for forecasting traffic flow; and 3) resilient traffic signal control in the presence of denial-of-service attacks.

2018-07-26
2019-05-30
Aron Laszka, Waseem Abbas, Yevgeniy Vorobeychik, Xenofon Koutsoukos.  2018.  Synergistic Security for the Industrial Internet of Things: Integrating Redundancy, Diversity, and Hardening. IEEE International Conference on Industrial Internet (ICII). :153-158.

As the Industrial Internet of Things (IIot) becomes more prevalent in critical application domains, ensuring security and resilience in the face of cyber-attacks is becoming an issue of paramount importance. Cyber-attacks against critical infrastructures, for example, against smart water-distribution and transportation systems, pose serious threats to public health and safety. Owing to the severity of these threats, a variety of security techniques are available. However, no single technique can address the whole spectrum of cyber-attacks that may be launched by a determined and resourceful attacker. In light of this, we consider a multi-pronged approach for designing secure and resilient IIoT systems, which integrates redundancy, diversity, and hardening techniques. We introduce a framework for quantifying cyber-security risks and optimizing IIoT design by determining security investments in redundancy, diversity, and hardening. To demonstrate the applicability of our framework, we present a case study in water-distribution systems. Our numerical evaluation shows that integrating redundancy, diversity, and hardening can lead to reduced security risk at the same cost.

2017-10-27
Aron Laszka, Waseem Abbas, Xenofon Koutsoukos.  2017.  Scheduling Battery-Powered Sensor Networks for Minimizing Detection Delays. IEEE Communication Letters.
Sensor networks monitoring spatially-distributed physical systems often comprise battery-powered sensor devices. To extend lifetime, battery power may be conserved using sleep scheduling: activating and deactivating some of the sensors from time to time. Scheduling sensors with the goal of maximizing average coverage, that is the average fraction of time for which each monitoring target is covered by some active sensor has been studied extensively. However, many applications also require time-critical monitoring in the sense that one has to minimize the average delay until an unpredictable change or event at a monitoring target is detected. In this paper, we study the problem of sleep scheduling sensors to minimize the average delay in detecting such time-critical events in the context of monitoring physical systems that can be modeled using graphs, such as water distribution networks. We provide a game-theoretic solution that computes schedules with near optimal average delays. We illustrate that schedules that optimize average coverage may result in large average detection delays, whereas schedules minimizing average detection delays using our proposed scheme also result in near optimal average coverage.
Waseem Abbas, Aron Laszka, Yevgeniy Vorobeychik, Xenofon Koutsoukos.  2017.  Scheduling Resource-Bounded Monitoring Devices for Event Detection and Isolation in Networks. IEEE Transactions on Network Science and Engineering.
In networked systems, monitoring devices such as sensors are typically deployed to monitor various target locations. Targets are the points in the physical space at which events of some interest, such as random faults or attacks, can occur. Most often, these devices have limited energy supplies, and they can operate for a limited duration. As a result, energyefficient monitoring of various target locations through a set of monitoring devices with limited energy supplies is a crucial problem in networked systems. In this paper, we study optimal scheduling of monitoring devices to maximize network coverage for detecting and isolating events on targets for a given network lifetime. The monitoring devices considered could remain active only for a fraction of the overall network lifetime. We formulate the problem of scheduling of monitoring devices as a graph labeling problem, which unlike other existing solutions, allows us to directly utilize the underlying network structure to explore the trade-off between coverage and network lifetime. In this direction, first we propose a greedy heuristic to solve the graph labeling problem, and then provide a game-theoretic solution to achieve optimal graph labeling. Moreover, the proposed setup can be used to simultaneously solve the scheduling and placement of monitoring devices, which yields improved performance as compared to separately solving the placement and scheduling problems. Finally, we illustrate our results on various networks, including real-world water distribution networks.
Waseem Abbas, Aron Laszka, Xenofon Koutsoukos.  2017.  Graph-Theoretic Approach for Increasing Participation in Social Sensing. 2nd International Workshop on Social Sensing (SocialSens 2017).
Participatory sensing enables individuals, each with limited sensing capability, to share measurements and contribute towards developing a complete knowledge of their environment. The success of a participatory sensing application is often measured in terms of the number of users participating. In most cases, an individual’s eagerness to participate depends on the group of users who already participate. For instance, when users share data with their peers in a social network, the engagement of an individual depends on its peers. Such engagement rules have been studied in the context of social networks using the concept of k-core, which assumes that participation is determined solely by network topology. However, in participatory sensing, engagement rules must also consider user heterogeneity, such as differences in sensing capabilities and physical location. To account for heterogeneity, we introduce the concept of (r,s)-core to model the set of participating users. We formulate the problem of maximizing the size of the (r,s)-core using 1) anchor users, who are incentivized to participate regardless of their peers, and by 2) assigning capabilities to users. Since these problems are computationally challenging, we study heuristic algorithms for solving them. Based on real-world social networks as well as random graphs, we provide numerical results showing significant improvement compared to random selection of anchor nodes and label assignments.
Amin Ghafouri, Aron Laszka, Abhishek Dubey, Xenofon Koutsoukos.  2017.  Optimal Detection of Fault Traffic Sensors Used in Route Planning. 2nd International Workshop on Science of Smart City Operations and Platforms Engineering (SCOPE).

In a smart city, real-time traffic sensors may be deployed for various applications, such as route planning. Unfortunately, sensors are prone to failures, which result in erroneous traffic data. Erroneous data can adversely affect applications such as route planning, and can cause increased travel time and environmental impact. To minimize the impact of sensor failures, we must detect them promptly and with high accuracy. However, typical detection algorithms may lead to a large number of false positives (i.e., false alarms) and false negatives (i.e., missed detections), which can result in suboptimal route planning. In this paper, we devise an effective detector for identifying faulty traffic sensors using a prediction model based on Gaussian Processes. Further, we present an approach for computing the optimal parameters of the detector which minimize losses due to falsepositive and false-negative errors. We also characterize critical sensors, whose failure can have high impact on the route planning application. Finally, we implement our method and evaluate it numerically using a real-world dataset and the route planning platform OpenTripPlanner.

Aron Laszka, Waseem Abbas, Yevgeniy Vorobeychik, Xenofon Koutsoukos.  2017.  Synergic Security for Smart Water Networks: Redundancy, Diversity, and Hardening. 3rd International Workshop on Cyber-Physical Systems for Smart Water Networks (CySWater 2017).
Smart water networks can provide great benefits to our society in terms of efficiency and sustainability. However, smart capabilities and connectivity also expose these systems to a wide range of cyber attacks, which enable cyber-terrorists and hostile nation states to mount cyber-physical attacks. Cyber-physical attacks against critical infrastructure, such as water treatment and distribution systems, pose a serious threat to public safety and health. Consequently, it is imperative that we improve the resilience of smart water networks. We consider three approaches for improving resilience: redundancy, diversity, and hardening. Even though each one of these “canonical” approaches has been thoroughly studied in prior work, a unified theory on how to combine them in the most efficient way has not yet been established. In this paper, we address this problem by studying the synergy of these approaches in the context of protecting smart water networks from cyber-physical contamination attacks.
Aron Laszka, Yevgeniy Vorobeychik, Daniel Fabbri, Chao Yan, Bradley Malin.  2017.  A Game-Theoretic Approach for Alert Prioritization. AAAI-17 Workshop on Artificial Intelligence for Cyber Security (AICS).
The quantity of information that is collected and stored in computer systems continues to grow rapidly. At the same time, the sensitivity of such information (e.g., detailed medical records) often makes such information valuable to both external attackers, who may obtain information by compromising a system, and malicious insiders, who may misuse information by exercising their authorization. To mitigate compromises and deter misuse, the security administrators of these resources often deploy various types of intrusion and misuse detection systems, which provide alerts of suspicious events that are worthy of follow-up review. However, in practice, these systems may generate a large number of false alerts, wasting the time of investigators. Given that security administrators have limited budget for investigating alerts, they must prioritize certain types of alerts over others. An important challenge in alert prioritization is that adversaries may take advantage of such behavior to evade detection - specifically by mounting attacks that trigger alerts that are less likely to be investigated. In this paper, we model alert prioritization with adaptive adversaries using a Stackelberg game and introduce an approach to compute the optimal prioritization of alert types. We evaluate our approach using both synthetic data and a real-world dataset of alerts generated from the audit logs of an electronic medical record system in use at a large academic medical center.
Nika Haghtalab, Aron Laszka, Ariel Procaccia, Yevgeniy Vorobeychik, Xenofon Koutsoukos.  2017.  Monitoring Stealthy Diffusion. Knowledge and Information Systems.
(No abstract.)
Aron Laszka, Yevgeniy Vorobeychik, Xenofon Koutsoukos.  2017.  A game-theoretic approach for integrity assurance in resource-bounded systems. International Journal of Information Security.

Assuring communication integrity is a central problem in security. However, overhead costs associated with cryptographic primitives used towards this end introduce significant practical implementation challenges for resource-bounded systems, such as cyberphysical systems. For example, many control systems are built on legacy components which are computationally limited but have strict timing constraints. If integrity protection is a binary decision, it may simply be infeasible to introduce into such systems; without it, however, an adversary can forge malicious messages, which can cause significant physical or financial harm. To bridge the gap between such binary decisions, we propose a stochastic message authentication approach that can explicitly trade computational cost off for security. We introduce a formal game-theoretic framework for optimal stochastic message authentication, providing provable guarantees for resource-bounded systems based on an existing message authentication scheme. We use our framework to investigate attacker deterrence, as well as optimal stochastic message authentication when deterrence is impossible, in both short-term and long-term equilibria. Additionally, we propose two schemes for implementing stochastic message authentication in practice, one for saving computation only at the receiver and one for saving computation at both ends, and demonstrate the associated computational savings using an actual implementation.

Waseem Abbas, Aron Laszka, Yevgeniy Vorobeychik, Xenofon Koutsoukos.  2017.  Improving Network Connectivity Using Trusted Nodes and Edges. American Control Conference (ACC 2017).

Network connectivity is a primary attribute and a characteristic phenomenon of any networked system. A high connectivity is often desired within networks; for instance to increase robustness to failures, and resilience against attacks. A typical approach to increasing network connectivity is to strategically add links; however, adding links is not always the most suitable option. In this paper, we propose an alternative approach to improving network connectivity, that is by making a small subset of nodes and edges “trusted,” which means that such nodes and edges remain intact at all times and are insusceptible to failures. We then show that by controlling the number of trusted nodes and edges, any desired level of network connectivity can be obtained. Along with characterizing network connectivity with trusted nodes and edges, we present heuristics to compute a small number of such nodes and edges. Finally, we illustrate our results on various networks.

Aron Laszka, Waseem Abbas, Shankar Sastry, Yevgeniy Vorobeychik, Xenofon Koutsoukos.  2016.  Optimal Thresholds for Intrusion Detection Systems. 3rd Annual Symposium and Bootcamp on the Science of Security (HotSoS).

In recent years, we have seen a number of successful attacks against high-profile targets, some of which have even caused severe physical damage. These examples have shown us that resourceful and determined attackers can penetrate virtually any system, even those that are secured by the "air-gap." Consequently, in order to minimize the impact of stealthy attacks, defenders have to focus not only on strengthening the first lines of defense but also on deploying effective intrusion-detection systems. Intrusion-detection systems can play a key role in protecting sensitive computer systems since they give defenders a chance to detect and mitigate attacks before they could cause substantial losses. However, an over-sensitive intrusion-detection system, which produces a large number of false alarms, imposes prohibitively high operational costs on a defender since alarms need to be manually investigated. Thus, defenders have to strike the right balance between maximizing security and minimizing costs. Optimizing the sensitivity of intrusion detection systems is especially challenging in the case when multiple interdependent computer systems have to be defended against a strategic attacker, who can target computer systems in order to maximize losses and minimize the probability of detection. We model this scenario as an attacker-defender security game and study the problem of finding optimal intrusion detection thresholds.

Aron Laszka, Bradley Potteiger, Yevgeniy Vorobeychik, Saurabh Amin, Xenofon Koutsoukos.  2016.  Vulnerability of Transportation Networks to Traffic-Signal Tampering. 7th ACM/IEEE International Conference on Cyber-Physical Systems (ICCPS).

Traffic signals were originally standalone hardware devices running on fixed schedules, but by now, they have evolved into complex networked systems. As a consequence, traffic signals have become susceptible to attacks through wireless interfaces or even remote attacks through the Internet. Indeed, recent studies have shown that many traffic lights deployed in practice have easily exploitable vulnerabilities, which allow an attacker to tamper with the configuration of the signal. Due to hardware-based failsafes, these vulnerabilities cannot be used to cause accidents. However, they may be used to cause disastrous traffic congestions. Building on Daganzo's well-known traffic model, we introduce an approach for evaluating vulnerabilities of transportation networks, identifying traffic signals that have the greatest impact on congestion and which, therefore, make natural targets for attacks. While we prove that finding an attack that maximally impacts congestion is NP-hard, we also exhibit a polynomial-time heuristic algorithm for computing approximately optimal attacks. We then use numerical experiments to show that our algorithm is extremely efficient in practice. Finally, we also evaluate our approach using the SUMO traffic simulator with a real-world transportation network, demonstrating vulnerabilities of this network. These simulation results extend the numerical experiments by showing that our algorithm is extremely efficient in a microsimulation model as well.

2016-04-11
Aron Laszka, Bradley Potteiger, Yevgeniy Vorobeychik, Saurabh Amin, Xenofon Koutsoukos.  2016.  Vulnerability of Transportation Networks to Traffic-Signal Tampering. 7th ACM/IEEE International Conference on Cyber-Physical Systems (ICCPS).

Traffic signals were originally standalone hardware devices running on fixed schedules, but by now, they have evolved into complex networked systems. As a consequence, traffic signals have become susceptible to attacks through wireless interfaces or even remote attacks through the Internet. Indeed, recent studies have shown that many traffic lights deployed in practice have easily exploitable vulnerabilities, which allow an attacker to tamper with the configuration of the signal. Due to hardware-based failsafes, these vulnerabilities cannot be used to cause accidents. However, they may be used to cause disastrous traffic congestions. Building on Daganzo's well-known traffic model, we introduce an approach for evaluating vulnerabilities of transportation networks, identifying traffic signals that have the greatest impact on congestion and which, therefore, make natural targets for attacks. While we prove that finding an attack that maximally impacts congestion is NP-hard, we also exhibit a polynomial-time heuristic algorithm for computing approximately optimal attacks. We then use numerical experiments to show that our algorithm is extremely efficient in practice. Finally, we also evaluate our approach using the SUMO traffic simulator with a real-world transportation network, demonstrating vulnerabilities of this network. These simulation results extend the numerical experiments by showing that our algorithm is extremely efficient in a microsimulation model as well.

2017-10-27
Aron Laszka, Jian Lou, Yevgeniy Vorobeychik.  2016.  Multi-Defender Strategic Filtering Against Spear-Phishing Attacks. 30th AAAI Conference on Artificial Intelligence (AAAI).
Spear-phishing attacks pose a serious threat to sensitive computer systems, since they sidestep technical security mechanisms by exploiting the carelessness of authorized users. A common way to mitigate such attacks is to use e-mail filters which block e-mails with a maliciousness score above a chosen threshold. Optimal choice of such a threshold involves a tradeoff between the risk from delivered malicious emails and the cost of blocking benign traffic. A further complicating factor is the strategic nature of an attacker, who may selectively target users offering the best value in terms of likelihood of success and resulting access privileges. Previous work on strategic threshold-selection considered a single organization choosing thresholds for all users. In reality, many organizations are potential targets of such attacks, and their incentives need not be well aligned. We therefore consider the problem of strategic threshold-selection by a collection of independent self-interested users. We characterize both Stackelberg multi-defender equilibria, corresponding to short-term strategic dynamics, as well as Nash equilibria of the simultaneous game between all users and the attacker, modeling long-term dynamics, and exhibit a polynomial-time algorithm for computing short-term (Stackelberg) equilibria. We find that while Stackelberg multi-defender equilibrium need not exist, Nash equilibrium always exists, and remarkably, both equilibria are unique and socially optimal.
2016-04-07
Aron Laszka, Jian Lou, Yevgeniy Vorobeychik.  2016.  Multi-Defender Strategic Filtering Against Spear-Phishing Attacks. 30th AAAI Conference on Artificial Intelligence (AAAI).

Spear-phishing attacks pose a serious threat to sensitive computer systems, since they sidestep technical security mechanisms by exploiting the carelessness of authorized users. A common way to mitigate such attacks is to use e-mail filters which block e-mails with a maliciousness score above a chosen threshold. Optimal choice of such a threshold involves a tradeoff between the risk from delivered malicious emails and the cost of blocking benign traffic. A further complicating factor is the strategic nature of an attacker, who may selectively target users offering the best value in terms of likelihood of success and resulting access privileges. Previous work on strategic threshold-selection considered a single organization choosing thresholds for all users. In reality, many organizations are potential targets of such attacks, and their incentives need not be well aligned. We therefore consider the problem of strategic threshold-selection by a collection of independent self-interested users. We characterize both Stackelberg multi-defender equilibria, corresponding to short-term strategic dynamics, as well as Nash equilibria of the simultaneous game between all users and the attacker, modeling long-term dynamics, and exhibit a polynomial-time algorithm for computing short-term (Stackelberg) equilibria. We find that while Stackelberg multi-defender equilibrium need not exist, Nash equilibrium always exists, and remarkably, both equilibria are unique and socially optimal.

2017-10-27
Aron Laszka, Galina A. Schwartz.  2016.  Becoming Cybercriminals: Incentives in Networks with Interdependent Security. 7th Conference on Decision and Game Theory for Security (GameSec).
We study users’ incentives to become cybercriminals when network security is interdependent. We present a game-theoretic model in which each player (i.e., network user) decides his type, honest or malicious. Honest users represent law-abiding network users, while malicious users represent cybercriminals. After deciding on their types, the users make their security choices. We will follow [29], where breach probabilities for large-scale networks are obtained from a standard interdependent security (IDS) setup. In large-scale IDS networks, the breach probability of each player becomes a function of two variables: the player’s own security action and network security, which is an aggregate characteristic of the network; network security is computed from the security actions of the individual nodes that comprise the network. This allows us to quantify user security choices in networks with IDS even when users have only very limited, aggregate information about security choices of other users of the network.
Mingyi Zhao, Aron Laszka, Thomas Maillart, Jens Grossklags.  2016.  Crowdsourced Security Vulnerability Discovery: Modeling and Organizing Bug-Bounty Programs. HCOMP Workshop on Mathematical Foundations of Human Computation.
(No abstract.)