Biblio
In order to be resilient to attacks, a cyber-physical system (CPS) must be able to detect attacks before they can cause significant damage. To achieve this, \emph{intrusion detection systems} (IDS) may be deployed, which can detect attacks and alert human operators, who can then intervene. However, the resource-constrained nature of many CPS poses a challenge, since reliable IDS can be computationally expensive. Consequently, computational nodes may not be able to perform intrusion detection continuously, which means that we have to devise a schedule for performing intrusion detection. While a uniformly random schedule may be optimal in a purely cyber system, an optimal schedule for protecting CPS must also take into account the physical properties of the system, since the set of adversarial actions and their consequences depend on the physical systems. Here, in the context of water distribution networks, we study IDS scheduling problems in two settings and under the constraints on the available battery supplies. In the first problem, the objective is to design, for a given duration of time $T$, scheduling schemes for IDS so that the probability of detecting an attack is maximized within that duration. We propose efficient heuristic algorithms for this general problem and evaluate them on various networks. In the second problem, our objective is to design scheduling schemes for IDS so that the overall lifetime of the network is maximized while ensuring that an intruder attack is always detected. Various strategies to deal with this problem are presented and evaluated for various networks.
The objective of this work is to develop an efficient and practical sensor placement method for the failure detection and localization in water networks. We formulate the problem as the minimum test cover problem (MTC) with the objective of selecting the minimum number of sensors required to uniquely identify and localize pipe failure events. First, we summarize a single-level sensing model and discuss an efficient fast greedy approach for solving the MTC problem. Simulation results on benchmark test networks demonstrate the efficacy of the fast greedy algorithm. Second, we develop a multi-level sensing model that captures additional physical features of the disturbance event, such as the time lapsed between the occurrence of disturbance and its detection by the sensor. Our sensor placement approach using MTC extends to the multi-level sensing model and an improved identification performance is obtained via reduced number of sensors (in comparison to single-level sensing model). In particular, we investigate the bi-level sensing model to illustrate the efficacy of employing multi-level sensors for the identification of failure events. Finally, we suggest extensions of our approach for the deployment of heterogeneous sensors in water networks by exploring the trade-off between cost and performance (measured in terms of the identification score of pipe/link failures).
Due to their low deployment costs, wireless sensor networks (WSN) may act as a key enabling technology for a variety of spatially-distributed cyber-physical system (CPS) applications, ranging from intelligent traffic control to smart grids. However, besides providing tremendous benefits in terms of deployment costs, they also open up new possibilities for malicious attackers, who aim to cause financial losses or physical damage. Since perfectly securing these spatially-distributed systems is either impossible or financially unattainable, we need to design them to be resilient to attacks: even if some parts of the system are compromised or unavailable due to the actions of an attacker, the system as a whole must continue to operate with minimal losses. In a CPS, control decisions affecting the physical process depend on the observed data from the sensor network. Any malicious activity in the sensor network can therefore severely impact the physical process, and consequently the overall CPS operations. These factors necessitate a deeper probe into the domain of resilient WSN for CPS. In this chapter, we provide an overview of various dimensions in this field, including objectives of WSN in CPS, attack scenarios and vulnerabilities, notion of attack-resilience in WSN for CPS, and solution approaches towards attaining resilience. We also highlight major challenges, recent developments, and future directions in this area.
To penetrate sensitive computer networks, attackers can use spear phishing to sidestep technical security mechanisms by exploiting the privileges of careless users. In order to maximize their success probability, attackers have to target the users that constitute the weakest links of the system. The optimal selection of these target users takes into account both the damage that can be caused by a user and the probability of a malicious e-mail being delivered to and opened by a user. Since attackers select their targets in a strategic way, the optimal mitigation of these attacks requires the defender to also personalize the e-mail filters by taking into account the users' properties.
In this paper, we assume that a learned classifier is given and propose strategic per-user filtering thresholds for mitigating spear-phishing attacks. We formulate the problem of filtering targeted and non-targeted malicious e-mails as a Stackelberg security game. We characterize the optimal filtering strategies and show how to compute them in practice. Finally, we evaluate our results using two real-world datasets and demonstrate that the proposed thresholds lead to lower losses than nonstrategic thresholds.
Assuring communication integrity is a central problem in security. However, overhead costs associated with cryptographic primitives used towards this end introduce significant practical implementation challenges for resource-bounded systems, such as cyber-physical systems. For example, many control systems are built on legacy components which are computationally limited but have strict timing constraints. If integrity protection is a binary decision, it may simply be infeasible to introduce into such systems; without it, however, an adversary can forge malicious messages, which can cause signicant physical or financial harm. We propose a formal game-theoretic framework for optimal stochastic message authentication, providing provable integrity guarantees for resource-bounded systems based on an existing MAC scheme. We use our framework to investigate attacker deterrence, as well as optimal design of stochastic message authentication schemes when deterrence is impossible. Finally, we provide experimental results on the computational performance of our framework in practice.