Visible to the public Biblio

Filters: Author is Sayan Mitra, University of Illinois at Urbana-Champaign  [Clear All Filters]
2017-07-19
Hussein Sibai, University of Illinois at Urbana-Champaign, Sayan Mitra, University of Illinois at Urbana-Champaign.  2017.  Optimal Data Rate for Estimation and Mode Detection of Switched Nonlinear Systems. 20th ACM International Conference on Hybrid Systems: Computation and Control (HSCC 2017).

State estimation is a fundamental problem for monitoring and controlling systems. Engineering systems interconnect sensing and computing devices over a shared bandwidth-limited channels, and therefore, estimation algorithms should strive to use bandwidth optimally. We present a notion of entropy for state estimation of switched nonlinear dynamical systems, an upper bound for it and a state estimation algorithm for the case when the switching signal is unobservable. Our approach relies on the notion of topological entropy and uses techniques from the theory for control under limited information. We show that the average bit rate used is optimal in the sense that, the eciency gap of the algorithm is within an additive constant of the gap between estimation entropy of the system and its known upper-bound. We apply the algorithm to two system models and discuss the performance implications of the number of tracked modes.

Yu Wang, University of Illinois at Urbana-Champaign, Zhenqi Huang, University of Illinois at Urbana-Champaign, Sayan Mitra, University of Illinois at Urbana-Champaign, Geir Dullerud, University of Illinois at Urbana-Champaign.  2017.  Differential Privacy and Entropy in Distributed Feedback Systems: Minimizing Mechanisms and Performance Trade-offs. IEEE Transactions on Network Control Systems. 4(1)

In distributed control systems with shared resources, participating agents can improve the overall performance of the system by sharing data about their personal preferences. In this paper, we formulate and study a natural tradeoff arising in these problems between the privacy of the agent’s data and the performance of the control system.We formalize privacy in terms of differential privacy of agents’ preference vectors. The overall control system consists of N agents with linear discrete-time coupled dynamics, each controlled to track its preference vector. Performance of the system is measured by the mean squared tracking error.We present a mechanism that achieves differential privacy by adding Laplace noise to the shared information in a way that depends on the sensitivity of the control system to the private data. We show that for stable systems the performance cost of using this type of privacy preserving mechanism grows as O(T 3/Nε2 ), where T is the time horizon and ε is the privacy parameter. For unstable systems, the cost grows exponentially with time. From an estimation point of view, we establish a lower-bound for the entropy of any unbiased estimator of the private data from any noise-adding mechanism that gives ε-differential privacy.We show that the mechanism achieving this lower-bound is a randomized mechanism that also uses Laplace noise.

2017-04-21
Hussein Sibai, University of Illinois at Urbana-Champaign, Sayan Mitra, University of Illinois at Urbana-Champaign.  2017.  Optimal Data Rate for State Estimation of Switched Nonlinear Systems. 20th ACM International Conference on Hybrid Systems: Computation and Control (HSCC 2017).

State estimation is a fundamental problem for monitoring and controlling systems. Engineering systems interconnect sensing and computing devices over a shared bandwidth-limited channels, and therefore, estimation algorithms should strive to use bandwidth optimally. We present a notion of entropy for state estimation of switched nonlinear dynamical systems, an upper bound for it and a state estimation algorithm for the case when the switching signal is unobservable. Our approach relies on the notion of topological entropy and uses techniques from the theory for control under limited information. We show that the average bit rate used is optimal in the sense that, the efficiency gap of the algorithm is within an additive constant of the gap between estimation entropy of the system and its known upper-bound. We apply the algorithm to two system models and discuss the performance implications of the number of tracked modes.

Yu Wang, University of Illinois at Urbana-Champaign, Zhenqi Huang, University of Illinois at Urbana-Champaign, Sayan Mitra, University of Illinois at Urbana-Champaign, Geir Dullerud, University of Illinois at Urbana-Champaign.  2017.  Differential Privacy in Linear Distributed Control Systems: Entropy Minimizing Mechanisms and Performance Tradeoffs. IEEE Transactions on Network Control Systems. 4(1)

In distributed control systems with shared resources, participating agents can improve the overall performance of the system by sharing data about their personal references. In this paper, we formulate and study a natural tradeoff arising in these problems between the privacy of the agent’s data and the performance of the control system.We formalize privacy in terms of differential privacy of agents’ preference vectors. The overall control system consists of N agents with linear discrete-time coupled dynamics, each controlled to track its preference vector. Performance of the system is measured by the mean squared tracking error. We present a mechanism that achieves differential privacy by adding Laplace noise to the shared information in a way that depends on the sensitivity of the control system to the private data. We show that for stable systems the performance cost of using this type of privacy preserving mechanism grows as O(T/Nε2), where T is the time horizon and ε is the privacy parameter. For unstable systems, the cost grows exponentially with time. From an estimation point of view, we establish a lower-bound for the entropy of any unbiased estimator of the private data from any noise-adding mechanism that gives ε-differential privacy. We show that the mechanism achieving this lower-bound is a randomized mechanism that also uses Laplace noise.

2017-03-03
Zhenqi Huang, University of Illinois at Urbana-Champaign, Yu Wang, University of Illinois at Urbana-Champaign, Sayan Mitra, University of Illinois at Urbana-Champaign, Geir Dullerud, University of Illinois at Urbana-Champaign.  2015.  Analyzing the Cost of Securing Control Systems. The Next Wave: The National Security Agency's Review of Emerging Technologies. 21(1)

This article describes our recent progress on the development of rigorous analytical metrics for assessing the threat-performance trade-off in control systems. Computing systems that monitor and control physical processes are now pervasive, yet their security is frequently an afterthought rather than a first-order design consideration. We investigate a rational basis for deciding—at the design level—how much investment should be made to secure the system.

2016-12-14
2016-12-13
2016-07-13
Zhenqi Huang, University of Illinois at Urbana-Champaign, Chuchu Fan, University of Illinois at Urbana-Champaign, Sayan Mitra, University of Illinois at Urbana-Champaign.  2016.  Bounced Invariant Verification for Time-delayed Nonlinear Networked Dynamical Systems. Journal of the IFAC, International Federation of Automatic Control, Nonlinear Analysis: Hybrid Systems.

We present a technique for bounded invariant verification of nonlinear networked dynamical systems with delayed interconnections. The underlying problem in precise boundedtime verification lies with computing bounds on the sensitivity of trajectories (or solutions) to changes in initial states and inputs of the system. For large networks, computing this sensitivity
with precision guarantees is challenging. We introduce the notion of input-to-state (IS) discrepancy of each module or subsystem in a larger nonlinear networked dynamical system. The IS discrepancy bounds the distance between two solutions or trajectories of a module in terms of their initial states and their inputs. Given the IS discrepancy functions of the modules, we show that it is possible to effectively construct a reduced (low dimensional) time-delayed dynamical system, such that the trajectory of this reduced model precisely bounds the distance between the trajectories of the complete network with changed initial states. Using the above results we develop a sound and relatively complete algorithm for bounded invariant verification of networked dynamical systems consisting of nonlinear modules interacting through possibly delayed signals. Finally, we introduce a local version of IS discrepancy and show that it is possible to compute them using only the Lipschitz constant and the Jacobian of the dynamic function of the modules.
 

2015-11-17
Zhenqi Huang, University of Illinois at Urbana-Champaign, Sayan Mitra, University of Illinois at Urbana-Champaign, Nitin Vaidya, University of Illinois at Urbana-Champaign.  2015.  Differentially Private Distributed Optimization. IEEE International Conference on Distributed Computing and Networks (ICDCN 2015), .

In distributed optimization and iterative consensus literature, a standard problem is for N agents to minimize a function f over a subset of Rn, where the cost function is expressed as Σ fi . In this paper, we study the private distributed optimization (PDOP) problem with the additional requirement that the cost function of the individual agents should remain differentially private.  The adversary attempts to infer information about the private cost functions from the messages that the agents exchange. Achieving differential privacy requires that any change of an individual’s cost function only results in unsubstantial changes in the statistics of the messages. We propose a class of iterative algorithms for solving PDOP, which achieves differential privacy and convergence to the optimal value.  Our analysis reveals the dependence of the achieved accuracy and the privacy levels on the the parameters of the algorithm.

Yu Wang, University of Illinois at Urbana-Champaign, Zhenqi Huang, University of Illinois at Urbana-Champaign, Sayan Mitra, University of Illinois at Urbana-Champaign, Geir Dullerud, University of Illinois at Urbana-Champaign.  2014.  Entropy-minimizing Mechanism for Differential Privacy of Discrete-time Linear Feedback Systems. 53rd IEEE Conference on Decision and Control (CDC 2014).

The concept of differential  privacy stems from the study of private query of datasets.  In  this work, we apply this concept  to metric spaces  to study a  mechanism  that randomizes a deterministic query by adding  mean-zero  noise to keep differential  privacy.

Zhenqi Huang, University of Illinois at Urbana-Champaign, Chuchu Fan, University of Illinois at Urbana-Champaign, Alexandru Mereacre, University of Oxford, Sayan Mitra, University of Illinois at Urbana-Champaign, Marta Kwiatkowska, University of Oxford.  2015.  Simulation-based Verification of Cardiac Pacemakers with Guaranteed Coverage. Special Issue of IEEE Design and Test. 32(5)

Design and testing of pacemaker is challenging because of the need to capture the interaction between the physical processes (e.g. voltage signal in cardiac tissue) and the embedded software (e.g. a pacemaker). At the same time, there is a growing need for design and certification methodologies that can provide quality assurance for the embedded software. We describe recent progress in simulation-based techniques that are capable of ensuring guaranteed coverage. Our methods employ discrep- ancy functions, which impose bounds on system dynamics, and proceed through iteratively constructing over-approximations of the reachable set of states. We are able to prove time bounded safety or produce counterexamples. We illustrate the techniques by analyzing a family of pacemaker designs against time duration requirements and synthesize safe parameter ranges. We conclude by outlining the potential uses of this technology to improve the safety of medical device designs.

Zhenqi Huang, University of Illinois at Urbana-Champaign, Yu Wang, University of Illinois at Urbana-Champaign, Sayan Mitra, University of Illinois at Urbana-Champaign, Geir Dullerud, University of Illinois at Urbana-Champaign.  2015.  Controller Synthesis for Linear Time-varying Systems with Adversaries.

We present a controller synthesis algorithm for a discrete time reach-avoid problem in the presence of adversaries. Our model of the adversary captures typical malicious attacks en- visioned on cyber-physical systems such as sensor spoofing, controller corruption, and actuator intrusion. After formu- lating the problem in a general setting, we present a sound and complete algorithm for the case with linear dynamics and an adversary with a budget on the total L2-norm of its actions. The algorithm relies on a result from linear control theory that enables us to decompose and precisely compute the reachable states of the system in terms of a symbolic simulation of the adversary-free dynamics and the total uncertainty induced by the adversary. With this de- composition, the synthesis problem eliminates the universal quantifier on the adversary’s choices and the symbolic con- troller actions can be effectively solved using an SMT solver. The constraints induced by the adversary are computed by solving second-order cone programmings. The algorithm is later extended to synthesize state-dependent controller and to generate attacks for the adversary. We present prelimi- nary experimental results that show the effectiveness of this approach on several example problems.