Visible to the public Biblio

Found 179 results

Filters: Keyword is science of security  [Clear All Filters]
2014-10-24
Kothari, Vijay, Blythe, Jim, Smith, Sean, Koppel, Ross.  2014.  Agent-based Modeling of User Circumvention of Security. 1st International Workshop on Agents and CyberSecurity. :5:1–5:4.

Security subsystems are often designed with flawed assumptions arising from system designers' faulty mental models. Designers tend to assume that users behave according to some textbook ideal, and to consider each potential exposure/interface in isolation. However, fieldwork continually shows that even well-intentioned users often depart from this ideal and circumvent controls in order to perform daily work tasks, and that "incorrect" user behaviors can create unexpected links between otherwise "independent" interfaces. When it comes to security features and parameters, designers try to find the choices that optimize security utility–-except these flawed assumptions give rise to an incorrect curve, and lead to choices that actually make security worse, in practice. We propose that improving this situation requires giving designers more accurate models of real user behavior and how it influences aggregate system security. Agent-based modeling can be a fruitful first step here. In this paper, we study a particular instance of this problem, propose user-centric techniques designed to strengthen the security of systems while simultaneously improving the usability of them, and propose further directions of inquiry.

2014-09-17
Cao, Phuong, Li, Hongyang, Nahrstedt, Klara, Kalbarczyk, Zbigniew, Iyer, Ravishankar, Slagell, Adam J..  2014.  Personalized Password Guessing: A New Security Threat. Proceedings of the 2014 Symposium and Bootcamp on the Science of Security. :22:1–22:2.

This paper presents a model for generating personalized passwords (i.e., passwords based on user and service profile). A user's password is generated from a list of personalized words, each word is drawn from a topic relating to a user and the service in use. The proposed model can be applied to: (i) assess the strength of a password (i.e., determine how many guesses are used to crack the password), and (ii) generate secure (i.e., contains digits, special characters, or capitalized characters) yet easy to memorize passwords.

Cao, Phuong, Chung, Key-whan, Kalbarczyk, Zbigniew, Iyer, Ravishankar, Slagell, Adam J..  2014.  Preemptive Intrusion Detection. Proceedings of the 2014 Symposium and Bootcamp on the Science of Security. :21:1–21:2.

This paper presents a system named SPOT to achieve high accuracy and preemptive detection of attacks. We use security logs of real-incidents that occurred over a six-year period at National Center for Supercomputing Applications (NCSA) to evaluate SPOT. Our data consists of attacks that led directly to the target system being compromised, i.e., not detected in advance, either by the security analysts or by intrusion detection systems. Our approach can detect 75 percent of attacks as early as minutes to tens of hours before attack payloads are executed.

Mitra, Sayan.  2014.  Proving Abstractions of Dynamical Systems Through Numerical Simulations. Proceedings of the 2014 Symposium and Bootcamp on the Science of Security. :12:1–12:9.

A key question that arises in rigorous analysis of cyberphysical systems under attack involves establishing whether or not the attacked system deviates significantly from the ideal allowed behavior. This is the problem of deciding whether or not the ideal system is an abstraction of the attacked system. A quantitative variation of this question can capture how much the attacked system deviates from the ideal. Thus, algorithms for deciding abstraction relations can help measure the effect of attacks on cyberphysical systems and to develop attack detection strategies. In this paper, we present a decision procedure for proving that one nonlinear dynamical system is a quantitative abstraction of another. Directly computing the reach sets of these nonlinear systems are undecidable in general and reach set over-approximations do not give a direct way for proving abstraction. Our procedure uses (possibly inaccurate) numerical simulations and a model annotation to compute tight approximations of the observable behaviors of the system and then uses these approximations to decide on abstraction. We show that the procedure is sound and that it is guaranteed to terminate under reasonable robustness assumptions.