Visible to the public Biblio

Found 179 results

Filters: Keyword is science of security  [Clear All Filters]
2017-10-24
Yu Wang, University of Illinois at Urbana-Champaign, Matthew Hale, University of Illinois at Urbana-Champaign, Magnus Egerstedt, University of Illinois at Urbana-Champaign, Geir Dullerud, University of Illinois at Urbana-Champaign.  2017.  Differentially Private Objective Functions in Distributed Cloud-based Optimization. 20th World Congress of the International Federations of Automatic Control (IFAC 2017 World Congress).

Abstract—In this work, we study the problem of keeping the objective functions of individual agents "-differentially private in cloud-based distributed optimization, where agents are subject to global constraints and seek to minimize local objective functions. The communication architecture between agents is cloud-based – instead of communicating directly with each other, they oordinate by sharing states through a trusted cloud computer. In this problem, the difficulty is twofold: the objective functions are used repeatedly in every iteration, and the influence of  erturbing them extends to other agents and lasts over time. To solve the problem, we analyze the propagation of perturbations on objective functions over time, and derive an upper bound on them. With the upper bound, we design a noise-adding mechanism that randomizes the cloudbased distributed optimization algorithm to keep the individual objective functions "-differentially private. In addition, we study the trade-off between the privacy of objective functions and the performance of the new cloud-based distributed optimization algorithm with noise. We present simulation results to numerically verify the theoretical results presented.

2017-08-03
Xinyu Zhou, University of Maryland at College Park, David Nicol, University of Illinois at Urbana-Champaign.  2017.  Trust-Aware Failure Detector in Multi-Agent Systems.

Poster presented at the 2017 Science of Security UIUC Lablet Summer Internship Poster Session held on July 27, 2017 in Urbana, IL.

Shubham Goel, University of Illinois at Urbana-Champaign, Masooda Bashir, University of Illinois at Urbana-Champaign.  2017.  Ransomware: Recommendations against the Extortion.

Poster presented at the 2017 Science of Security UIUC Lablet Summer Internship Poster Session held on July 27, 2017 in Urbana, IL.

2017-07-19
Joao Jansch Porto, Geir Dullerud, University of Illinois at Urbana-Champaign.  2017.  Decentralized Control with Moving-Horizon Linear Switched Systems: Synthesis and Testbed Implementation. American Control Conference 2017.

In this paper, we improve recent results on the decentralized switched control problem to include the moving horizon case and apply it to a testbed system. Using known derivations for a centralized controller with look-ahead, we were able to extend the decentralized problem with finite memory to include receding horizon modal information. We then compare the performance of a switched controller with finite memory and look-ahead horizon to that of a linear time independent (LTI) controller using a simulation. The decentralized controller is further tested with a real-world system comprised of multiple model-sized hovercrafts.

Hussein Sibai, University of Illinois at Urbana-Champaign, Sayan Mitra, University of Illinois at Urbana-Champaign.  2017.  Optimal Data Rate for Estimation and Mode Detection of Switched Nonlinear Systems. 20th ACM International Conference on Hybrid Systems: Computation and Control (HSCC 2017).

State estimation is a fundamental problem for monitoring and controlling systems. Engineering systems interconnect sensing and computing devices over a shared bandwidth-limited channels, and therefore, estimation algorithms should strive to use bandwidth optimally. We present a notion of entropy for state estimation of switched nonlinear dynamical systems, an upper bound for it and a state estimation algorithm for the case when the switching signal is unobservable. Our approach relies on the notion of topological entropy and uses techniques from the theory for control under limited information. We show that the average bit rate used is optimal in the sense that, the eciency gap of the algorithm is within an additive constant of the gap between estimation entropy of the system and its known upper-bound. We apply the algorithm to two system models and discuss the performance implications of the number of tracked modes.

Yu Wang, University of Illinois at Urbana-Champaign, Zhenqi Huang, University of Illinois at Urbana-Champaign, Sayan Mitra, University of Illinois at Urbana-Champaign, Geir Dullerud, University of Illinois at Urbana-Champaign.  2017.  Differential Privacy and Entropy in Distributed Feedback Systems: Minimizing Mechanisms and Performance Trade-offs. IEEE Transactions on Network Control Systems. 4(1)

In distributed control systems with shared resources, participating agents can improve the overall performance of the system by sharing data about their personal preferences. In this paper, we formulate and study a natural tradeoff arising in these problems between the privacy of the agent’s data and the performance of the control system.We formalize privacy in terms of differential privacy of agents’ preference vectors. The overall control system consists of N agents with linear discrete-time coupled dynamics, each controlled to track its preference vector. Performance of the system is measured by the mean squared tracking error.We present a mechanism that achieves differential privacy by adding Laplace noise to the shared information in a way that depends on the sensitivity of the control system to the private data. We show that for stable systems the performance cost of using this type of privacy preserving mechanism grows as O(T 3/Nε2 ), where T is the time horizon and ε is the privacy parameter. For unstable systems, the cost grows exponentially with time. From an estimation point of view, we establish a lower-bound for the entropy of any unbiased estimator of the private data from any noise-adding mechanism that gives ε-differential privacy.We show that the mechanism achieving this lower-bound is a randomized mechanism that also uses Laplace noise.

2017-07-18
Benjamin Andow, Akhil Acharya, Dengfeng Li, University of Illinois at Urbana-Champaign, William Enck, Kapil Singh, Tao Xie, University of Illinois at Urbana-Champaign.  2017.  UiRef: Analysis of Sensitive User Inputs in Android Applications. 10th ACM Conference on Security and Privacy in Wireless and Mobile Networks (WiSec 2017).

Mobile applications frequently request sensitive data. While prior work has focused on analyzing sensitive-data uses originating from well-dened API calls in the system, the security and privacy implications of inputs requested via application user interfaces have been widely unexplored. In this paper, our goal is to understand the broad implications of such requests in terms of the type of sensitive data being requested by applications.

To this end, we propose UiRef (User Input REsolution Framework), an automated approach for resolving the semantics of user inputs requested by mobile applications. UiRef’s design includes a number of novel techniques for extracting and resolving user interface labels and addressing ambiguity in semantics, resulting in signicant improvements over prior work.We apply UiRef to 50,162 Android applications from Google Play and use outlier analysis to triage applications with questionable input requests. We identify concerning developer practices, including insecure exposure of account passwords and non-consensual input disclosures to third parties. These ndings demonstrate the importance of user-input semantics when protecting end users.

Christopher Novak, Dartmouth College, Jim Blythe, University of Southern Califonia, Ross Koppel, University of Southern California, Vijay Kothari, Dartmouth College, Sean Smith, Dartmouth College.  2017.  Modeling Aggregate Security with User Agents that Employ Password Memorization Techniques. Symposium On Usable Privacy and Security (SOUPS 2017).

We discuss our ongoing work with an agent-based password simulation which models how site-enforced password requirements a ect aggregate security when people interact with multiple authentication systems. We model two password memorization techniques: passphrase generation and spaced repetition. Our simulation suggests system-generated passphrases lead to lower aggregate security across services that enforce even moderate password requirements. Furthermore, allowing users to expand their password length over time via spaced repetition increases aggregate security.

Haibing Zheng, Tencent, Inc., Dengfeng Li, University of Illinois at Urbana-Champaign, Xia Zeng, Tencent, Inc., Wujie Zheng, Tencent, Inc., Yuetang Deng, Tencent, Inc., Wing Lam, University of Illinois at Urbana-Champaign, Wei Yang, University of Illinois at Urbana-Champaign, Tao Xie, University of Illinois at Urbana-Champaign.  2017.  Automated Test Input Generation for Android: Towards Getting There in an Industrial Case. 39th International Conference on Software Engineering (ICSE 2017), Software Engineering in Practice (SEIP).

Monkey, a random testing tool from Google, has been popularly used in industrial practices for automatic test input generation for Android due to its applicability to a variety of application settings, e.g., ease of use and compatibility with different Android platforms. Recently, Monkey has been under the spotlight of the research community: recent studies found out that none of the studied tools from the academia were actually better than Monkey when applied on a set of open source Android apps. Our recent efforts performed the first case study of applying Monkey on WeChat, a popular messenger app with over 800 million monthly active users, and revealed many limitations of Monkey along with developing our improved approach to alleviate some of these limitations. In this paper, we explore two optimization techniques to improve the effectiveness and efficiency of our previous approach. We also conduct manual categorization of not-covered activities and two automatic coverage-analysis techniques to provide insightful information about the not-covered code entities. Lastly, we present findings of our empirical studies of conducting automatic random testing on WeChat with the preceding techniques.

Ross Koppel, University of Southern California, Jim Blythe, University of Southern Califonia, Vijay Kothari, Dartmouth College, Sean Smith, Dartmouth College.  2017.  Password Logbooks and What Their Amazon Reviews Reveal About the Users’ Motivations, Beliefs, and Behaviors. 2nd European Workshop on Useable Security (EuroUSEC 2017).

The existence of and market for notebooks designedfor users to write down passwords illuminates a sharp contrast: what is often prescribed as proper password behavior—e.g., never write down passwords—differs from what many users actually do. These password logbooks and their reviews provide many unique and surprising insights into their users’ beliefs, motivations, and behaviors. We examine the password logbooks and analyze, using grounded theory, their reviews, to better understand how these users think and behave with respectto password authentication. Several themes emerge including: previous password management strategies, gifting, organizational strategies, password sharing, and dubious security advice. Some users argue these books enhance security.

Jiaqi Yan, Illinois Institute of Technology, Xin Liu, Illinois Institute of Technology, Dong Jin, Illinois Institute of Technology.  2017.  Simulation of a Software-Defined Network as One Big Switch. ACM SIGSIM Conference on Principles of Advanced Discrete Simulation (ACM SIGSIM PADS).

Software-defined networking (SDN) technology promises centralized and rapid network provisioning, holistic management, low operational cost, and improved network visibility. Researchers have developed multiple SDN simulation and emulation platforms to expedite the adoption of many emerging SDN-based applications to production systems. However, the scalability of those platforms is often limited by the underlying physical hardware resources, which inevitably affects the simulation delity in large-scale network settings. In this paper, we present a model abstraction technique that e ectively transforms the network devices in an SDN-based network to one virtualized switch model. While signi cantly reducing the model execution time and enabling the real-time simulation capability, our abstracted model also preserves the end-to-end forwarding behavior of the original network. To achieve this, we first classify packets with the same forwarding behavior into smaller and disjoint Equivalence Classes (ECes) by analyzing the OpenFlow rules installed on the SDN devices. We then create a graph model representing the forwarding behavior of each EC. By traversing those graphs, we nally construct the rules of the big-switch model to e ectively preserve the original network's end-to-end forwarding behavior. Experimental results demonstrate that the network forwarding logic equivalence is well preserved between the abstracted model and the original SDN network. The model abstraction process is fast, e.g., 3.15 seconds to transform a medium-scale tree network consisting of 53,260 rules. The big-switch model is able to speed up the simulation by 4.3 times in average and up to 6.69 times among our evaluation experiments.

Soudeh Ghorbani, University of Illinois at Urbana-Champaign, P. Brighten Godfrey, University of Illinois at Urbana-Champaign.  2017.  COCONUT: Seamless Scale Out of Network Elements. Twelfth European Conference on Computer Systems (EuroSys 2017).

A key use of software-defined networking is to enable scaleout of network data plane elements. Naively scaling networking elements, however, can cause incorrect behavior. For example, we show that an IDS system which operates correctly as a single network element can erroneously and permanently block hosts when it is replicated.

In this paper, we provide a system, COCONUT, for seamless scale-out of network forwarding elements; that is, an SDN application programmer can program to what functionally appears to be a single forwarding element, but whichmay be replicated behind the scenes. To do this, we identifythe key property for seamless scale out, weak causality,and guarantee it through a practical and scalable implementation of vector clocks in the data plane. We prove that COCONUT enables seamless scale out of networking elements, i.e., the user-perceived behavior of any COCONUT element implemented with a distributed set of concurrent replicas is provably indistinguishable from its singleton implementation. Finally, we build a prototype of COCONUT and experimentally demonstrate its correct behavior. We also show that its abstraction enables a more efficient implementation of seamless scale-out compared to a naive baseline.

2017-04-21
Sean Smith, Dartmouth College, Ross Koppel, University of Pennsylvania, Jim Blythe, University of Southern California, Vijay Kothari, Dartmouth College.  2017.  Flawed Mental Models Lead to Bad Cybersecurity Decisions: Let’s Do a Better Job!.

Presented at the Symposium and Bootcamp in the Science of Security (HotSoS 2017), poster session in Hanover, MD, April 4-5, 2017.

[Anonymous].  2017.  Anonymity in the Bitcoin Peer-to-Peer Network.

Presented at ITI Joint Trust and Security/Science of Security Seminar, February 21, 2017.

Nitin Vaidya, University of Illinois at Urbana-Champaign.  2017.  Privacy & Security in Machine Learning/Optimization.

Presented at NSA SoS Quarterly Meeting, February 2, 2017.

Giulia Fanti, University of Illinois at Urbana-Champaign.  2017.  Anonymity in the Bitcoin Peer-to-Peer Network.

Presented at NSA SoS Quarterly Meeting, February 2, 2017

Hussein Sibai, University of Illinois at Urbana-Champaign, Sayan Mitra, University of Illinois at Urbana-Champaign.  2017.  Optimal Data Rate for State Estimation of Switched Nonlinear Systems. 20th ACM International Conference on Hybrid Systems: Computation and Control (HSCC 2017).

State estimation is a fundamental problem for monitoring and controlling systems. Engineering systems interconnect sensing and computing devices over a shared bandwidth-limited channels, and therefore, estimation algorithms should strive to use bandwidth optimally. We present a notion of entropy for state estimation of switched nonlinear dynamical systems, an upper bound for it and a state estimation algorithm for the case when the switching signal is unobservable. Our approach relies on the notion of topological entropy and uses techniques from the theory for control under limited information. We show that the average bit rate used is optimal in the sense that, the efficiency gap of the algorithm is within an additive constant of the gap between estimation entropy of the system and its known upper-bound. We apply the algorithm to two system models and discuss the performance implications of the number of tracked modes.

Yu Wang, University of Illinois at Urbana-Champaign, Zhenqi Huang, University of Illinois at Urbana-Champaign, Sayan Mitra, University of Illinois at Urbana-Champaign, Geir Dullerud, University of Illinois at Urbana-Champaign.  2017.  Differential Privacy in Linear Distributed Control Systems: Entropy Minimizing Mechanisms and Performance Tradeoffs. IEEE Transactions on Network Control Systems. 4(1)

In distributed control systems with shared resources, participating agents can improve the overall performance of the system by sharing data about their personal references. In this paper, we formulate and study a natural tradeoff arising in these problems between the privacy of the agent’s data and the performance of the control system.We formalize privacy in terms of differential privacy of agents’ preference vectors. The overall control system consists of N agents with linear discrete-time coupled dynamics, each controlled to track its preference vector. Performance of the system is measured by the mean squared tracking error. We present a mechanism that achieves differential privacy by adding Laplace noise to the shared information in a way that depends on the sensitivity of the control system to the private data. We show that for stable systems the performance cost of using this type of privacy preserving mechanism grows as O(T/Nε2), where T is the time horizon and ε is the privacy parameter. For unstable systems, the cost grows exponentially with time. From an estimation point of view, we establish a lower-bound for the entropy of any unbiased estimator of the private data from any noise-adding mechanism that gives ε-differential privacy. We show that the mechanism achieving this lower-bound is a randomized mechanism that also uses Laplace noise.

Santhosh Prabhu, University of Illinois at Urbana-Champaign, Mo Dong, University of Illinois at Urbana-Champaign, Tong Meng, University of Illinois at Urbana-Champaign, P. Brighten Godfrey, University of Illinois at Urbana-Champaign, Matthew Caesar, University of Illinois at Urbana-Champaign.  2017.  Let Me Rephrase That: Transparent Optimization in SDNs. ACM Symposium on SDN Research (SOSR 2017).

Enterprise networks today have highly diverse correctness requirements and relatively common performance objectives. As a result, preferred abstractions for enterprise networks are those which allow matching correctness specification, while transparently managing performance. Existing SDN network management architectures, however, bundle correctness and performance as a single abstraction. We argue that this creates an SDN ecosystem that is unnecessarily hard to build, maintain and evolve. We advocate a separation of the diverse correctness abstractions from generic performance optimization, to enable easier evolution of SDN controllers and platforms. We propose Oreo, a first step towards a common and relatively transparent performance optimization layer for SDN. Oreo performs the optimization by first building a model that describes every flow in the network, and then performing network-wide, multi-objective optimization based on this model without disrupting higher level correctness.