Visible to the public Biblio

Filters: Author is Peter Volgyesi  [Clear All Filters]
2019-05-31
Ákos Lédeczi, MiklÓs MarÓti, Hamid Zare, Bernard Yett, Nicole Hutchins, Brian Broll, Peter Volgyesi, Michael B. Smith, Timothy Darrah, Mary Metelko et al..  2019.  Teaching Cybersecurity with Networked Robots. 50th ACM Technical Symposium on Computer Science Education . :885-891.

The paper presents RoboScape, a collaborative, networked robotics environment that makes key ideas in computer science accessible to groups of learners in informal learning spaces and K-12 classrooms. RoboScape is built on top of NetsBlox, an open-source, networked, visual programming environment based on Snap! that is specifically designed to introduce students to distributed computation and computer networking. RoboScape provides a twist on the state of the art of robotics learning platforms. First, a user's program controlling the robot runs in the browser and not on the robot. There is no need to download the program to the robot and hence, development and debugging become much easier. Second, the wireless communication between a student's program and the robot can be overheard by the programs of the other students. This makes cybersecurity an immediate need that students realize and can work to address. We have designed and delivered a cybersecurity summer camp to 24 students in grades between 7 and 12. The paper summarizes the technology behind RoboScape, the hands-on curriculum of the camp and the lessons learned.

2019-05-30
Xenofon Koutsoukos, Gabor Karsai, Aron Laszka, Himanshu Neema, Bradley Potteiger, Peter Volgyesi, Yevgeniy Vorobeychik, Janos Sztipanovits.  2018.  SURE: A Modeling and Simulation Integration Platform for Evaluation of Secure and Resilient Cyber–Physical Systems. Proceedings of the IEEE. 106:93-112.

The exponential growth of information and communication technologies have caused a profound shift in the way humans engineer systems leading to the emergence of closed-loop systems involving strong integration and coordination of physical and cyber components, often referred to as cyber-physical systems (CPSs). Because of these disruptive changes, physical systems can now be attacked through cyberspace and cyberspace can be attacked through physical means. The paper considers security and resilience as system properties emerging from the intersection of system dynamics and the computing architecture. A modeling and simulation integration platform for experimentation and evaluation of resilient CPSs is presented using smart transportation systems as the application domain. Evaluation of resilience is based on attacker-defender games using simulations of sufficient fidelity. The platform integrates 1) realistic models of cyber and physical components and their interactions; 2) cyber attack models that focus on the impact of attacks to CPS behavior and operation; and 3) operational scenarios that can be used for evaluation of cybersecurity risks. Three case studies are presented to demonstrate the advantages of the platform: 1) vulnerability analysis of transportation networks to traffic signal tampering; 2) resilient sensor selection for forecasting traffic flow; and 3) resilient traffic signal control in the presence of denial-of-service attacks.