Visible to the public Biblio

Filters: Author is Aron Laszka  [Clear All Filters]
2017-10-27
Waseem Abbas, Aron Laszka, Yevgeniy Vorobeychik, Xenofon Koutsoukos.  2017.  Scheduling Resource-Bounded Monitoring Devices for Event Detection and Isolation in Networks. IEEE Transactions on Network Science and Engineering.
In networked systems, monitoring devices such as sensors are typically deployed to monitor various target locations. Targets are the points in the physical space at which events of some interest, such as random faults or attacks, can occur. Most often, these devices have limited energy supplies, and they can operate for a limited duration. As a result, energyefficient monitoring of various target locations through a set of monitoring devices with limited energy supplies is a crucial problem in networked systems. In this paper, we study optimal scheduling of monitoring devices to maximize network coverage for detecting and isolating events on targets for a given network lifetime. The monitoring devices considered could remain active only for a fraction of the overall network lifetime. We formulate the problem of scheduling of monitoring devices as a graph labeling problem, which unlike other existing solutions, allows us to directly utilize the underlying network structure to explore the trade-off between coverage and network lifetime. In this direction, first we propose a greedy heuristic to solve the graph labeling problem, and then provide a game-theoretic solution to achieve optimal graph labeling. Moreover, the proposed setup can be used to simultaneously solve the scheduling and placement of monitoring devices, which yields improved performance as compared to separately solving the placement and scheduling problems. Finally, we illustrate our results on various networks, including real-world water distribution networks.
Aron Laszka, Yevgeniy Vorobeychik, Xenofon Koutsoukos.  2017.  A game-theoretic approach for integrity assurance in resource-bounded systems. International Journal of Information Security.

Assuring communication integrity is a central problem in security. However, overhead costs associated with cryptographic primitives used towards this end introduce significant practical implementation challenges for resource-bounded systems, such as cyberphysical systems. For example, many control systems are built on legacy components which are computationally limited but have strict timing constraints. If integrity protection is a binary decision, it may simply be infeasible to introduce into such systems; without it, however, an adversary can forge malicious messages, which can cause significant physical or financial harm. To bridge the gap between such binary decisions, we propose a stochastic message authentication approach that can explicitly trade computational cost off for security. We introduce a formal game-theoretic framework for optimal stochastic message authentication, providing provable guarantees for resource-bounded systems based on an existing message authentication scheme. We use our framework to investigate attacker deterrence, as well as optimal stochastic message authentication when deterrence is impossible, in both short-term and long-term equilibria. Additionally, we propose two schemes for implementing stochastic message authentication in practice, one for saving computation only at the receiver and one for saving computation at both ends, and demonstrate the associated computational savings using an actual implementation.

Nika Haghtalab, Aron Laszka, Ariel Procaccia, Yevgeniy Vorobeychik, Xenofon Koutsoukos.  2017.  Monitoring Stealthy Diffusion. Knowledge and Information Systems.
(No abstract.)
Aron Laszka, Yevgeniy Vorobeychik, Daniel Fabbri, Chao Yan, Bradley Malin.  2017.  A Game-Theoretic Approach for Alert Prioritization. AAAI-17 Workshop on Artificial Intelligence for Cyber Security (AICS).
The quantity of information that is collected and stored in computer systems continues to grow rapidly. At the same time, the sensitivity of such information (e.g., detailed medical records) often makes such information valuable to both external attackers, who may obtain information by compromising a system, and malicious insiders, who may misuse information by exercising their authorization. To mitigate compromises and deter misuse, the security administrators of these resources often deploy various types of intrusion and misuse detection systems, which provide alerts of suspicious events that are worthy of follow-up review. However, in practice, these systems may generate a large number of false alerts, wasting the time of investigators. Given that security administrators have limited budget for investigating alerts, they must prioritize certain types of alerts over others. An important challenge in alert prioritization is that adversaries may take advantage of such behavior to evade detection - specifically by mounting attacks that trigger alerts that are less likely to be investigated. In this paper, we model alert prioritization with adaptive adversaries using a Stackelberg game and introduce an approach to compute the optimal prioritization of alert types. We evaluate our approach using both synthetic data and a real-world dataset of alerts generated from the audit logs of an electronic medical record system in use at a large academic medical center.
Aron Laszka, Waseem Abbas, Yevgeniy Vorobeychik, Xenofon Koutsoukos.  2017.  Synergic Security for Smart Water Networks: Redundancy, Diversity, and Hardening. 3rd International Workshop on Cyber-Physical Systems for Smart Water Networks (CySWater 2017).
Smart water networks can provide great benefits to our society in terms of efficiency and sustainability. However, smart capabilities and connectivity also expose these systems to a wide range of cyber attacks, which enable cyber-terrorists and hostile nation states to mount cyber-physical attacks. Cyber-physical attacks against critical infrastructure, such as water treatment and distribution systems, pose a serious threat to public safety and health. Consequently, it is imperative that we improve the resilience of smart water networks. We consider three approaches for improving resilience: redundancy, diversity, and hardening. Even though each one of these “canonical” approaches has been thoroughly studied in prior work, a unified theory on how to combine them in the most efficient way has not yet been established. In this paper, we address this problem by studying the synergy of these approaches in the context of protecting smart water networks from cyber-physical contamination attacks.
Waseem Abbas, Aron Laszka, Xenofon Koutsoukos.  2017.  Graph-Theoretic Approach for Increasing Participation in Social Sensing. 2nd International Workshop on Social Sensing (SocialSens 2017).
Participatory sensing enables individuals, each with limited sensing capability, to share measurements and contribute towards developing a complete knowledge of their environment. The success of a participatory sensing application is often measured in terms of the number of users participating. In most cases, an individual’s eagerness to participate depends on the group of users who already participate. For instance, when users share data with their peers in a social network, the engagement of an individual depends on its peers. Such engagement rules have been studied in the context of social networks using the concept of k-core, which assumes that participation is determined solely by network topology. However, in participatory sensing, engagement rules must also consider user heterogeneity, such as differences in sensing capabilities and physical location. To account for heterogeneity, we introduce the concept of (r,s)-core to model the set of participating users. We formulate the problem of maximizing the size of the (r,s)-core using 1) anchor users, who are incentivized to participate regardless of their peers, and by 2) assigning capabilities to users. Since these problems are computationally challenging, we study heuristic algorithms for solving them. Based on real-world social networks as well as random graphs, we provide numerical results showing significant improvement compared to random selection of anchor nodes and label assignments.
Amin Ghafouri, Aron Laszka, Abhishek Dubey, Xenofon Koutsoukos.  2017.  Optimal Detection of Fault Traffic Sensors Used in Route Planning. 2nd International Workshop on Science of Smart City Operations and Platforms Engineering (SCOPE).

In a smart city, real-time traffic sensors may be deployed for various applications, such as route planning. Unfortunately, sensors are prone to failures, which result in erroneous traffic data. Erroneous data can adversely affect applications such as route planning, and can cause increased travel time and environmental impact. To minimize the impact of sensor failures, we must detect them promptly and with high accuracy. However, typical detection algorithms may lead to a large number of false positives (i.e., false alarms) and false negatives (i.e., missed detections), which can result in suboptimal route planning. In this paper, we devise an effective detector for identifying faulty traffic sensors using a prediction model based on Gaussian Processes. Further, we present an approach for computing the optimal parameters of the detector which minimize losses due to falsepositive and false-negative errors. We also characterize critical sensors, whose failure can have high impact on the route planning application. Finally, we implement our method and evaluate it numerically using a real-world dataset and the route planning platform OpenTripPlanner.

Waseem Abbas, Aron Laszka, Yevgeniy Vorobeychik, Xenofon Koutsoukos.  2017.  Improving Network Connectivity Using Trusted Nodes and Edges. American Control Conference (ACC 2017).

Network connectivity is a primary attribute and a characteristic phenomenon of any networked system. A high connectivity is often desired within networks; for instance to increase robustness to failures, and resilience against attacks. A typical approach to increasing network connectivity is to strategically add links; however, adding links is not always the most suitable option. In this paper, we propose an alternative approach to improving network connectivity, that is by making a small subset of nodes and edges “trusted,” which means that such nodes and edges remain intact at all times and are insusceptible to failures. We then show that by controlling the number of trusted nodes and edges, any desired level of network connectivity can be obtained. Along with characterizing network connectivity with trusted nodes and edges, we present heuristics to compute a small number of such nodes and edges. Finally, we illustrate our results on various networks.