Visible to the public Biblio

Filters: Author is Waseem Abbas  [Clear All Filters]
2019-05-31
2019-05-30
Aron Laszka, Waseem Abbas, Yevgeniy Vorobeychik, Xenofon Koutsoukos.  2018.  Synergistic Security for the Industrial Internet of Things: Integrating Redundancy, Diversity, and Hardening. IEEE International Conference on Industrial Internet (ICII). :153-158.

As the Industrial Internet of Things (IIot) becomes more prevalent in critical application domains, ensuring security and resilience in the face of cyber-attacks is becoming an issue of paramount importance. Cyber-attacks against critical infrastructures, for example, against smart water-distribution and transportation systems, pose serious threats to public health and safety. Owing to the severity of these threats, a variety of security techniques are available. However, no single technique can address the whole spectrum of cyber-attacks that may be launched by a determined and resourceful attacker. In light of this, we consider a multi-pronged approach for designing secure and resilient IIoT systems, which integrates redundancy, diversity, and hardening techniques. We introduce a framework for quantifying cyber-security risks and optimizing IIoT design by determining security investments in redundancy, diversity, and hardening. To demonstrate the applicability of our framework, we present a case study in water-distribution systems. Our numerical evaluation shows that integrating redundancy, diversity, and hardening can lead to reduced security risk at the same cost.

Waseem Abbas, Aron Laszka, Xenofon Koutsoukos.  2018.  Improving Network Connectivity and Robustness Using Trusted Nodes With Application to Resilient Consensus. IEEE Transactions on Control of Network Systems. 5:2036-2048.

To observe and control a networked system, especially in failure-prone circumstances, it is imperative that the underlying network structure be robust against node or link failures. A common approach for increasing network robustness is redundancy: deploying additional nodes and establishing new links between nodes, which could be prohibitively expensive. This paper addresses the problem of improving structural robustness of networks without adding extra links. The main idea is to ensure that a small subset of nodes, referred to as the trusted nodes, remains intact and functions correctly at all times. We extend two fundamental metrics of structural robustness with the notion of trusted nodes, network connectivity, and r-robustness, and then show that by controlling the number and location of trusted nodes, any desired connectivity and robustness can be achieved without adding extra links. We study the complexity of finding trusted nodes and construction of robust networks with trusted nodes. Finally, we present a resilient consensus algorithm with trusted nodes and show that, unlike existing algorithms, resilient consensus is possible in sparse networks containing few trusted nodes.

Waseem Abbas, Yevgeniy Vorobeychik, Xenofon Koutsoukos.  2014.  Resilient consensus protocol in the presence of trusted nodes. 7th International Symposium on Resilient Control Systems (ISRCS). :1-7.

In this paper, we propose a scheme for a resilient distributed consensus problem through a set of trusted nodes within the network. Currently, algorithms that solve resilient consensus problem demand networks to have high connectivity to overrule the effects of adversaries, or require nodes to have access to some non-local information. In our scheme, we incorporate the notion of trusted nodes to guarantee distributed consensus despite any number of adversarial attacks, even in sparse networks. A subset of nodes, which are more secured against the attacks, constitute a set of trusted nodes. It is shown that the network becomes resilient against any number of attacks whenever the set of trusted nodes form a connected dominating set within the network. We also study a relationship between trusted nodes and the network robustness. Simulations are presented to illustrate and compare our scheme with the existing ones.

2019-05-29
Amin Ghafouri, Xenofon Koutsoukos, Yevgeniy Vorobeychik, Waseem Abbas, Aron Laszka.  2019.  A game-theoretic approach for selecting optimal time-dependent thresholds for anomaly detection. International Foundation for Autonomous Agents and Multi-Agent Systems Journal. 33

Adversaries may cause significant damage to smart infrastructure using malicious attacks. To detect and mitigate these attacks before they can cause physical damage, operators can deploy anomaly detection systems (ADS), which can alarm operators to suspicious activities. However, detection thresholds of ADS need to be configured properly, as an oversensitive detector raises a prohibitively large number of false alarms, while an undersensitive detector may miss actual attacks. This is an especially challenging problem in dynamical environments, where the impact of attacks may significantly vary over time. Using a game-theoretic approach, we formulate the problem of computing optimal detection thresholds which minimize both the number of false alarms and the probability of missing actual attacks as a two-player Stackelberg security game. We provide an efficient dynamic programming-based algorithm for solving the game, thereby finding optimal detection thresholds. We analyze the performance of the proposed algorithm and show that its running time scales polynomially as the length of the time horizon of interest increases. In addition, we study the problem of finding optimal thresholds in the presence of both random faults and attacks. Finally, we evaluate our result using a case study of contamination attacks in water networks, and show that our optimal thresholds significantly outperform fixed thresholds that do not consider that the environment is dynamical.

2017-10-27
Waseem Abbas, Lina Sela, Saurabh Amin, Xenofon Koutsoukos.  2015.  An Efficient Approach to Fault Identification in Urban Water Networks Using Multi-Level Sensing. BuildSys '15 Proceedings of the 2nd ACM International Conference on Embedded Systems for Energy-Efficient Built Environments. :147-156.
The objective of this work is to develop an efficient and practical sensor placement method for the failure detection and localization in water networks. We formulate the problem as the minimum test cover problem (MTC) with the objective of selecting the minimum number of sensors required to uniquely identify and localize pipe failure events. First, we summarize a single-level sensing model and discuss an efficient fast greedy approach for solving the MTC problem. Simulation results on benchmark test networks demonstrate the efficacy of the fast greedy algorithm. Second, we develop a multi-level sensing model that captures additional physical features of the disturbance event, such as the time lapsed between the occurrence of disturbance and its detection by the sensor. Our sensor placement approach using MTC extends to the multi-level sensing model and an improved identification performance is obtained via reduced number of sensors (in comparison to single-level sensing model). In particular, we investigate the bi-level sensing model to illustrate the efficacy of employing multi-level sensors for the identification of failure events. Finally, we suggest extensions of our approach for the deployment of heterogeneous sensors in water networks by exploring the trade-off between cost and performance (measured in terms of the identification score of pipe/link failures).
Waseem Abbas, Sagal Bhatia, Xenofon Koutsoukos.  2015.  Guarding Networks Through Heterogeneous Mobile Guards. 2015 American Control Conference (ACC 2015).
(No abstract.)
Waseem Abbas, Aron Laszka, Yevgeniy Vorobeychik, Xenofon Koutsoukos.  2015.  Scheduling Intrusion Detection Systems in Resource-Bounded Cyber-Physical Systems. 1st ACM Workshop on Cyber-Physical Systems Security and Privacy, in conjunction with ACM CCS 2015 (CPS-SPC).

In order to be resilient to attacks, a cyber-physical system (CPS) must be able to detect attacks before they can cause significant damage. To achieve this, intrusion detection systems (IDS) may be deployed, which can detect attacks and alert human operators, who can then intervene. However, the resource-constrained nature of many CPS poses a challenge, since reliable IDS can be computationally expensive. Consequently, computational nodes may not be able to perform intrusion detection continuously, which means that we have to devise a schedule for performing intrusion detection. While a uniformly random schedule may be optimal in a purely cyber system, an optimal schedule for protecting CPS must also take into account the physical properties of the system, since the set of adversarial actions and their consequences depend on the physical systems. Here, in the context of water distribution networks, we study IDS scheduling problems in two settings and under the constraints on the available battery supplies. In the first problem, the objective is to design, for a given duration of time, scheduling schemes for IDS so that the probability of detecting an attack is maximized within that duration. We propose efficient heuristic algorithms for this general problem and evaluate them on various networks. In the second problem, our objective is to design scheduling schemes for IDS so that the overall lifetime of the network is maximized while ensuring that an intruder attack is always detected. Various strategies to deal with this problem are presented and evaluated for various networks.

Waseem Abbas, Lina Perelman, Saurabh Amin, Xenofon Koutsoukos.  2015.  An Efficient Approach to Fault Identification in Urban Water Networks Using Multi-Level Sensing. 2nd ACM International Conference on Embedded Systems for Energy Efficient Buildings (ACM BuildSys 2015).
(No abstract.)
Aron Laszka, Waseem Abbas, Shankar Sastry, Yevgeniy Vorobeychik, Xenofon Koutsoukos.  2016.  Optimal Thresholds for Intrusion Detection Systems. 3rd Annual Symposium and Bootcamp on the Science of Security (HotSoS).

In recent years, we have seen a number of successful attacks against high-profile targets, some of which have even caused severe physical damage. These examples have shown us that resourceful and determined attackers can penetrate virtually any system, even those that are secured by the "air-gap." Consequently, in order to minimize the impact of stealthy attacks, defenders have to focus not only on strengthening the first lines of defense but also on deploying effective intrusion-detection systems. Intrusion-detection systems can play a key role in protecting sensitive computer systems since they give defenders a chance to detect and mitigate attacks before they could cause substantial losses. However, an over-sensitive intrusion-detection system, which produces a large number of false alarms, imposes prohibitively high operational costs on a defender since alarms need to be manually investigated. Thus, defenders have to strike the right balance between maximizing security and minimizing costs. Optimizing the sensitivity of intrusion detection systems is especially challenging in the case when multiple interdependent computer systems have to be defended against a strategic attacker, who can target computer systems in order to maximize losses and minimize the probability of detection. We model this scenario as an attacker-defender security game and study the problem of finding optimal intrusion detection thresholds.

Amin Ghafouri, Waseem Abbas, Yevgeniy Vorobeychik, Xenofon Koutsoukos.  2016.  Vulnerability of Fixed-Time Control of Signalized Intersections to Cyber-Tampering. 9th International Symposium on Resilient Control Systems.

— Recent experimental studies have shown that traf- fic management systems are vulnerable to cyber-attacks on sensor data. This paper studies the vulnerability of fixedtime control of signalized intersections when sensors measuring traffic flow information are compromised and perturbed by an adversary. The problems are formulated by considering three malicious objectives: 1) worst-case network accumulation, which aims to destabilize the overall network as much as possible; 2) worst-case lane accumulation, which aims to cause worstcase accumulation on some target lanes; and 3) risk-averse target accumulation, which aims to reach a target accumulation by making the minimum perturbation to sensor data. The problems are solved using bilevel programming optimization methods. Finally, a case study of a real network is used to illustrate the results.

Lina Sela, Waseem Abbas, Xenofon Koutsoukos, Saurabh Amin.  2016.  Sensor placement for fault location identification in water networks: a minimum test cover approach. Automatica. 72
This paper focuses on the optimal sensor placement problem for the identification of pipe failure locations in large-scale urban water systems. The problem involves selecting the minimum number of sensors such that every pipe failure can be uniquely localized. This problem can be viewed as a minimum test cover (MTC) problem, which is NP-hard. We consider two approaches to obtain approximate solutions to this problem. In the first approach, we transform the MTC problem to a minimum set cover (MSC) problem and use the greedy algorithm that exploits the submodularity property of the MSC problem to compute the solution to the MTC problem. In the second approach, we develop a new augmented greedy algorithm for solving the MTC problem. This approach does not require the transformation of the MTC to MSC. Our augmented greedy algorithm provides in a significant computational improvement while guaranteeing the same approximation ratio as the first approach. We propose several metrics to evaluate the performance of the sensor placement designs. Finally, we present detailed computational experiments for a number of real water distribution networks.
Amin Ghafouri, Waseem Abbas, Aron Laszka, Yevgeniy Vorobeychik, Xenofon Koutsoukos.  2016.  Optimal Thresholds for Anomaly-Based Intrusion Detection in Dynamical Environments. 2016 Conference on Decision and Game Theory for Security (GameSec 2016).

In recent years, we have seen a number of successful attacks against high-profile targets, some of which have even caused severe physical damage. These examples have shown us that resourceful and determined attackers can penetrate virtually any system, even those that are secured by the "air-gap." Consequently, in order to minimize the impact of stealthy attacks, defenders have to focus not only on strengthening the first lines of defense but also on deploying effective intrusion-detection systems. Intrusion-detection systems can play a key role in protecting sensitive computer systems since they give defenders a chance to detect and mitigate attacks before they could cause substantial losses. However, an over-sensitive intrusion-detection system, which produces a large number of false alarms, imposes prohibitively high operational costs on a defender since alarms need to be manually investigated. Thus, defenders have to strike the right balance between maximizing security and minimizing costs. Optimizing the sensitivity of intrusion detection systems is especially challenging in the case when multiple inter-dependent computer systems have to be defended against a strategic attacker, who can target computer systems in order to maximize losses and minimize the probability of detection. We model this scenario as an attacker-defender security game and study the problem of finding optimal intrusion detection thresholds.

Aron Laszka, Waseem Abbas, Xenofon Koutsoukos.  2017.  Scheduling Battery-Powered Sensor Networks for Minimizing Detection Delays. IEEE Communication Letters.
Sensor networks monitoring spatially-distributed physical systems often comprise battery-powered sensor devices. To extend lifetime, battery power may be conserved using sleep scheduling: activating and deactivating some of the sensors from time to time. Scheduling sensors with the goal of maximizing average coverage, that is the average fraction of time for which each monitoring target is covered by some active sensor has been studied extensively. However, many applications also require time-critical monitoring in the sense that one has to minimize the average delay until an unpredictable change or event at a monitoring target is detected. In this paper, we study the problem of sleep scheduling sensors to minimize the average delay in detecting such time-critical events in the context of monitoring physical systems that can be modeled using graphs, such as water distribution networks. We provide a game-theoretic solution that computes schedules with near optimal average delays. We illustrate that schedules that optimize average coverage may result in large average detection delays, whereas schedules minimizing average detection delays using our proposed scheme also result in near optimal average coverage.
Waseem Abbas, Aron Laszka, Yevgeniy Vorobeychik, Xenofon Koutsoukos.  2017.  Scheduling Resource-Bounded Monitoring Devices for Event Detection and Isolation in Networks. IEEE Transactions on Network Science and Engineering.
In networked systems, monitoring devices such as sensors are typically deployed to monitor various target locations. Targets are the points in the physical space at which events of some interest, such as random faults or attacks, can occur. Most often, these devices have limited energy supplies, and they can operate for a limited duration. As a result, energyefficient monitoring of various target locations through a set of monitoring devices with limited energy supplies is a crucial problem in networked systems. In this paper, we study optimal scheduling of monitoring devices to maximize network coverage for detecting and isolating events on targets for a given network lifetime. The monitoring devices considered could remain active only for a fraction of the overall network lifetime. We formulate the problem of scheduling of monitoring devices as a graph labeling problem, which unlike other existing solutions, allows us to directly utilize the underlying network structure to explore the trade-off between coverage and network lifetime. In this direction, first we propose a greedy heuristic to solve the graph labeling problem, and then provide a game-theoretic solution to achieve optimal graph labeling. Moreover, the proposed setup can be used to simultaneously solve the scheduling and placement of monitoring devices, which yields improved performance as compared to separately solving the placement and scheduling problems. Finally, we illustrate our results on various networks, including real-world water distribution networks.
Aron Laszka, Waseem Abbas, Yevgeniy Vorobeychik, Xenofon Koutsoukos.  2017.  Synergic Security for Smart Water Networks: Redundancy, Diversity, and Hardening. 3rd International Workshop on Cyber-Physical Systems for Smart Water Networks (CySWater 2017).
Smart water networks can provide great benefits to our society in terms of efficiency and sustainability. However, smart capabilities and connectivity also expose these systems to a wide range of cyber attacks, which enable cyber-terrorists and hostile nation states to mount cyber-physical attacks. Cyber-physical attacks against critical infrastructure, such as water treatment and distribution systems, pose a serious threat to public safety and health. Consequently, it is imperative that we improve the resilience of smart water networks. We consider three approaches for improving resilience: redundancy, diversity, and hardening. Even though each one of these “canonical” approaches has been thoroughly studied in prior work, a unified theory on how to combine them in the most efficient way has not yet been established. In this paper, we address this problem by studying the synergy of these approaches in the context of protecting smart water networks from cyber-physical contamination attacks.
Waseem Abbas, Aron Laszka, Xenofon Koutsoukos.  2017.  Graph-Theoretic Approach for Increasing Participation in Social Sensing. 2nd International Workshop on Social Sensing (SocialSens 2017).
Participatory sensing enables individuals, each with limited sensing capability, to share measurements and contribute towards developing a complete knowledge of their environment. The success of a participatory sensing application is often measured in terms of the number of users participating. In most cases, an individual’s eagerness to participate depends on the group of users who already participate. For instance, when users share data with their peers in a social network, the engagement of an individual depends on its peers. Such engagement rules have been studied in the context of social networks using the concept of k-core, which assumes that participation is determined solely by network topology. However, in participatory sensing, engagement rules must also consider user heterogeneity, such as differences in sensing capabilities and physical location. To account for heterogeneity, we introduce the concept of (r,s)-core to model the set of participating users. We formulate the problem of maximizing the size of the (r,s)-core using 1) anchor users, who are incentivized to participate regardless of their peers, and by 2) assigning capabilities to users. Since these problems are computationally challenging, we study heuristic algorithms for solving them. Based on real-world social networks as well as random graphs, we provide numerical results showing significant improvement compared to random selection of anchor nodes and label assignments.
Lina Sela Perelman, Waseem Abbas, Saurabh Amin, Xenofon Koutsoukos.  2017.  Resilient Sensor Placement for Fault Localization in Water Distribution Networks. 8th ACM/IEEE International Conference on Cyber-Physical Systems (ICCPS 2017).

In this paper, we study the sensor placement problem in urban water networks that maximizes the localization of pipe failures given that some sensors give incorrect outputs. False output of a sensor might be the result of degradation in sensor's hardware, software fault, or might be due to a cyber-attack on the sensor. Incorrect outputs from such sensors can have any possible values which could lead to an inaccurate localization of a failure event. We formulate the optimal sensor placement problem with erroneous sensors as a set multicover problem, which is NP-hard, and then discuss a polynomial time heuristic to obtain efficient solutions. In this direction, we first examine the physical model of the disturbance propagating in the network as a result of a failure event, and outline the multi-level sensing model that captures several event features. Second, using a combinatorial approach, we solve the problem of sensor placement that maximizes the localization of pipe failures by selecting $m$ sensors out of which at most $e$ give incorrect outputs. We propose various localization performance metrics, and numerically evaluate our approach on a benchmark and a real water distribution network. Finally, using computational experiments, we study relationships between design parameters such as the total number of sensors, the number of sensors with errors, and extracted signal features.

Waseem Abbas, Aron Laszka, Yevgeniy Vorobeychik, Xenofon Koutsoukos.  2017.  Improving Network Connectivity Using Trusted Nodes and Edges. American Control Conference (ACC 2017).

Network connectivity is a primary attribute and a characteristic phenomenon of any networked system. A high connectivity is often desired within networks; for instance to increase robustness to failures, and resilience against attacks. A typical approach to increasing network connectivity is to strategically add links; however, adding links is not always the most suitable option. In this paper, we propose an alternative approach to improving network connectivity, that is by making a small subset of nodes and edges “trusted,” which means that such nodes and edges remain intact at all times and are insusceptible to failures. We then show that by controlling the number of trusted nodes and edges, any desired level of network connectivity can be obtained. Along with characterizing network connectivity with trusted nodes and edges, we present heuristics to compute a small number of such nodes and edges. Finally, we illustrate our results on various networks.