Biblio
Distributed diffusion is a powerful algorithm for multi-task state estimation which enables networked agents to interact with neighbors to process input data and diffuse infor- mation across the network. Compared to a centralized approach, diffusion offers multiple advantages that include robustness to node and link failures. In this paper, we consider distributed diffusion for multi-task estimation where networked agents must estimate distinct but correlated states of interest by processing streaming data. By exploiting the adaptive weights used for diffusing information, we develop attack models that drive normal agents to converge to states selected by the attacker. The attack models can be used for both stationary and non- stationary state estimation. In addition, we develop a resilient distributed diffusion algorithm under the assumption that the number of compromised nodes in the neighborhood of each normal node is bounded by F and we show that resilience may be obtained at the cost of performance degradation. Finally, we evaluate the proposed attack models and resilient distributed diffusion algorithm using stationary and non-stationary multi- target localization.
In this paper, we propose a scheme for a resilient distributed consensus problem through a set of trusted nodes within the network. Currently, algorithms that solve resilient consensus problem demand networks to have high connectivity to overrule the effects of adversaries, or require nodes to have access to some non-local information. In our scheme, we incorporate the notion of trusted nodes to guarantee distributed consensus despite any number of adversarial attacks, even in sparse networks. A subset of nodes, which are more secured against the attacks, constitute a set of trusted nodes. It is shown that the network becomes resilient against any number of attacks whenever the set of trusted nodes form a connected dominating set within the network. We also study a relationship between trusted nodes and the network robustness. Simulations are presented to illustrate and compare our scheme with the existing ones.