Visible to the public Biblio

Filters: Keyword is Robust monitoring diagnosis and network control  [Clear All Filters]
2019-05-31
2019-05-30
Mark Yampolskiy, Yevgeniy Vorobeychik, Xenofon Koutsoukos, Peter Horvath, Heath LeBlanc, Janos Sztipanovits.  2014.  Resilient Distributed Consensus for Tree Topology. 3rd ACM International Conference on High Confidence Networked Systems (HiCoNS 2014).

Distributed consensus protocols are an important class of distributed algorithms. Recently, an Adversarial Resilient Consensus Protocol (ARC-P) has been proposed which is capable to achieve consensus despite false information pro- vided by a limited number of malicious nodes. In order to withstand false information, this algorithm requires a mesh- like topology, so that multiple alternative information flow paths exist. However, these assumptions are not always valid. For instance, in Smart Grid, an emerging distributed CPS, the node connectivity is expected to resemble the scale free network topology. Especially closer to the end customer, in home and building area networks, the connectivity graph resembles a tree structure.

In this paper, we propose a Range-based Adversary Re- silient Consensus Protocol (R.ARC-P). Three aspects dis- tinguish R.ARC-P from its predecessor: This protocol op- erates on the tree topology, it distinguishes between trust- worthiness of nodes in the immediate neighborhood, and it uses a valid value range in order to reduce the number of nodes considered as outliers. R.ARC-P is capable of reach- ing global consensus among all genuine nodes in the tree if assumptions about maximal number of malicious nodes in the neighborhood hold. In the case that this assumption is wrong, it is still possible to reach Strong Partial Consensus, i.e., consensus between leafs of at least two different parents.

Emeka Eyisi, Xenofon Koutsoukos.  2014.  Energy-Based Attack Detection in Networked Control Systems. 3rd ACM International Conference on High Confidence Networked Systems (HiCoNS 2014).

The increased prevalence of attacks on Cyber-Physical Systems (CPS) as well as the safety-critical nature of these systems, has resulted in increased concerns regarding the security of CPS. In an effort towards the security of CPS, we consider the detection of attacks based on the fundamental notion of a system’s energy. We propose a discrete-time Energy-Based Attack Detection mech- anism for networked cyber-physical systems that are dissipative or passive in nature. We present analytical results to show that the de- tection mechanism is effective in detecting a class of attack models in networked control systems (NCS). Finally, using simulations we illustrate the effectiveness of the proposed approach in detecting attacks.

2019-05-29
Amin Ghafouri, Xenofon Koutsoukos, Yevgeniy Vorobeychik.  2018.  Adversarial Regression for Detecting Attacks in Cyber-Physical Systems. Twenty-Seventh International Joint Conference on Artificial Intelligence.

Attacks in cyber-physical systems (CPS) which manipulate sensor readings can cause enormous physical damage if undetected. Detection of attacks on sensors is crucial to mitigate this issue. We study supervised regression as a means to detect anoma- lous sensor readings, where each sensor’s measure- ment is predicted as a function of other sensors. We show that several common learning approaches in this context are still vulnerable to stealthy at- tacks, which carefully modify readings of compro- mised sensors to cause desired damage while re- maining undetected. Next, we model the interac- tion between the CPS defender and attacker as a Stackelberg game in which the defender chooses detection thresholds, while the attacker deploys a stealthy attack in response. We present a heuris- tic algorithm for finding an approximately optimal threshold for the defender in this game, and show that it increases system resilience to attacks without significantly increasing the false alarm rate.

Amin Ghafouri, Xenofon Koutsoukos, Yevgeniy Vorobeychik, Waseem Abbas, Aron Laszka.  2019.  A game-theoretic approach for selecting optimal time-dependent thresholds for anomaly detection. International Foundation for Autonomous Agents and Multi-Agent Systems Journal. 33

Adversaries may cause significant damage to smart infrastructure using malicious attacks. To detect and mitigate these attacks before they can cause physical damage, operators can deploy anomaly detection systems (ADS), which can alarm operators to suspicious activities. However, detection thresholds of ADS need to be configured properly, as an oversensitive detector raises a prohibitively large number of false alarms, while an undersensitive detector may miss actual attacks. This is an especially challenging problem in dynamical environments, where the impact of attacks may significantly vary over time. Using a game-theoretic approach, we formulate the problem of computing optimal detection thresholds which minimize both the number of false alarms and the probability of missing actual attacks as a two-player Stackelberg security game. We provide an efficient dynamic programming-based algorithm for solving the game, thereby finding optimal detection thresholds. We analyze the performance of the proposed algorithm and show that its running time scales polynomially as the length of the time horizon of interest increases. In addition, we study the problem of finding optimal thresholds in the presence of both random faults and attacks. Finally, we evaluate our result using a case study of contamination attacks in water networks, and show that our optimal thresholds significantly outperform fixed thresholds that do not consider that the environment is dynamical.

2017-10-27
Waseem Abbas, Aron Laszka, Yevgeniy Vorobeychik, Xenofon Koutsoukos.  2015.  Scheduling Intrusion Detection Systems in Resource-Bounded Cyber-Physical Systems. 1st ACM Workshop on Cyber-Physical Systems Security and Privacy, in conjunction with ACM CCS 2015 (CPS-SPC).

In order to be resilient to attacks, a cyber-physical system (CPS) must be able to detect attacks before they can cause significant damage. To achieve this, intrusion detection systems (IDS) may be deployed, which can detect attacks and alert human operators, who can then intervene. However, the resource-constrained nature of many CPS poses a challenge, since reliable IDS can be computationally expensive. Consequently, computational nodes may not be able to perform intrusion detection continuously, which means that we have to devise a schedule for performing intrusion detection. While a uniformly random schedule may be optimal in a purely cyber system, an optimal schedule for protecting CPS must also take into account the physical properties of the system, since the set of adversarial actions and their consequences depend on the physical systems. Here, in the context of water distribution networks, we study IDS scheduling problems in two settings and under the constraints on the available battery supplies. In the first problem, the objective is to design, for a given duration of time, scheduling schemes for IDS so that the probability of detecting an attack is maximized within that duration. We propose efficient heuristic algorithms for this general problem and evaluate them on various networks. In the second problem, our objective is to design scheduling schemes for IDS so that the overall lifetime of the network is maximized while ensuring that an intruder attack is always detected. Various strategies to deal with this problem are presented and evaluated for various networks.

Aron Laszka, Bradley Potteiger, Yevgeniy Vorobeychik, Saurabh Amin, Xenofon Koutsoukos.  2016.  Vulnerability of Transportation Networks to Traffic-Signal Tampering. 7th ACM/IEEE International Conference on Cyber-Physical Systems (ICCPS).

Traffic signals were originally standalone hardware devices running on fixed schedules, but by now, they have evolved into complex networked systems. As a consequence, traffic signals have become susceptible to attacks through wireless interfaces or even remote attacks through the Internet. Indeed, recent studies have shown that many traffic lights deployed in practice have easily exploitable vulnerabilities, which allow an attacker to tamper with the configuration of the signal. Due to hardware-based failsafes, these vulnerabilities cannot be used to cause accidents. However, they may be used to cause disastrous traffic congestions. Building on Daganzo's well-known traffic model, we introduce an approach for evaluating vulnerabilities of transportation networks, identifying traffic signals that have the greatest impact on congestion and which, therefore, make natural targets for attacks. While we prove that finding an attack that maximally impacts congestion is NP-hard, we also exhibit a polynomial-time heuristic algorithm for computing approximately optimal attacks. We then use numerical experiments to show that our algorithm is extremely efficient in practice. Finally, we also evaluate our approach using the SUMO traffic simulator with a real-world transportation network, demonstrating vulnerabilities of this network. These simulation results extend the numerical experiments by showing that our algorithm is extremely efficient in a microsimulation model as well.

Aron Laszka, Waseem Abbas, Shankar Sastry, Yevgeniy Vorobeychik, Xenofon Koutsoukos.  2016.  Optimal Thresholds for Intrusion Detection Systems. 3rd Annual Symposium and Bootcamp on the Science of Security (HotSoS).

In recent years, we have seen a number of successful attacks against high-profile targets, some of which have even caused severe physical damage. These examples have shown us that resourceful and determined attackers can penetrate virtually any system, even those that are secured by the "air-gap." Consequently, in order to minimize the impact of stealthy attacks, defenders have to focus not only on strengthening the first lines of defense but also on deploying effective intrusion-detection systems. Intrusion-detection systems can play a key role in protecting sensitive computer systems since they give defenders a chance to detect and mitigate attacks before they could cause substantial losses. However, an over-sensitive intrusion-detection system, which produces a large number of false alarms, imposes prohibitively high operational costs on a defender since alarms need to be manually investigated. Thus, defenders have to strike the right balance between maximizing security and minimizing costs. Optimizing the sensitivity of intrusion detection systems is especially challenging in the case when multiple interdependent computer systems have to be defended against a strategic attacker, who can target computer systems in order to maximize losses and minimize the probability of detection. We model this scenario as an attacker-defender security game and study the problem of finding optimal intrusion detection thresholds.

Amin Ghafouri, Waseem Abbas, Aron Laszka, Yevgeniy Vorobeychik, Xenofon Koutsoukos.  2016.  Optimal Thresholds for Anomaly-Based Intrusion Detection in Dynamical Environments. 2016 Conference on Decision and Game Theory for Security (GameSec 2016).

In recent years, we have seen a number of successful attacks against high-profile targets, some of which have even caused severe physical damage. These examples have shown us that resourceful and determined attackers can penetrate virtually any system, even those that are secured by the "air-gap." Consequently, in order to minimize the impact of stealthy attacks, defenders have to focus not only on strengthening the first lines of defense but also on deploying effective intrusion-detection systems. Intrusion-detection systems can play a key role in protecting sensitive computer systems since they give defenders a chance to detect and mitigate attacks before they could cause substantial losses. However, an over-sensitive intrusion-detection system, which produces a large number of false alarms, imposes prohibitively high operational costs on a defender since alarms need to be manually investigated. Thus, defenders have to strike the right balance between maximizing security and minimizing costs. Optimizing the sensitivity of intrusion detection systems is especially challenging in the case when multiple inter-dependent computer systems have to be defended against a strategic attacker, who can target computer systems in order to maximize losses and minimize the probability of detection. We model this scenario as an attacker-defender security game and study the problem of finding optimal intrusion detection thresholds.

Heath LeBlanc, Xenofon Koutsoukos.  2017.  Resilient Consensus and Synchronization of Networked Multi-Agent Systems. IEEE Transactions on Control of Networked Systems.

(No abstract.)

(Conditionally accepted)

Waseem Abbas, Aron Laszka, Yevgeniy Vorobeychik, Xenofon Koutsoukos.  2017.  Improving Network Connectivity Using Trusted Nodes and Edges. American Control Conference (ACC 2017).

Network connectivity is a primary attribute and a characteristic phenomenon of any networked system. A high connectivity is often desired within networks; for instance to increase robustness to failures, and resilience against attacks. A typical approach to increasing network connectivity is to strategically add links; however, adding links is not always the most suitable option. In this paper, we propose an alternative approach to improving network connectivity, that is by making a small subset of nodes and edges “trusted,” which means that such nodes and edges remain intact at all times and are insusceptible to failures. We then show that by controlling the number of trusted nodes and edges, any desired level of network connectivity can be obtained. Along with characterizing network connectivity with trusted nodes and edges, we present heuristics to compute a small number of such nodes and edges. Finally, we illustrate our results on various networks.