Biblio
Reliable operation of electrical power systems in the presence of multiple critical N − k contingencies is an important challenge for the system operators. Identifying all the possible N − k critical contingencies to design effective mitigation strategies is computationally infeasible due to the combinatorial explosion of the search space. This paper describes two heuristic algorithms based on the iterative pruning of the candidate contingency set to effectively and efficiently identify all the critical N − k contingencies resulting in system failure. These algorithms are applied to the standard IEEE-14 bus system, IEEE-39 bus system, and IEEE-57 bus system to identify multiple critical N − k contingencies. The algorithms are able to capture all the possible critical N − k contingencies (where 1 ≤ k ≤ 9) without missing any dangerous contingency.
Cyber-Physical Systems (CPS) are systems with seamless integration of physical, computational and networking components. These systems can potentially have an impact on the physical components, hence it is critical to safeguard them against a wide range of attacks. In this paper, it is argued that an effective approach to achieve this goal is to systematically identify the potential threats at the design phase of building such systems, commonly achieved via threat modeling. In this context, a tool to perform systematic analysis of threat modeling for CPS is proposed. A real-world wireless railway temperature monitoring system is used as a case study to validate the proposed approach. The threats identified in the system are subsequently mitigated using National Institute of Standards and Technology (NIST) standards.
The security of cyber-physical systems is of paramount importance because of their pervasiveness in the critical infrastructure. Protecting cyber-physical systems greatly depends on a deep understanding of the possible attacks and their properties. The prerequisite for quantitative and qualitative analyses of attacks is a knowledge base containing attack descriptions. The structure of the attack descriptions is the indispensable foundation of the knowledge base.
This paper introduces the Cyber-Physical Attack Description Language (CP-ADL), which lays a cornerstone for the structured description of attacks on cyber-physical systems. The core of the language is a taxonomy of attacks on cyber-physical systems. The taxonomy specifies the semantically distinct aspects of attacks on cyber-physical systems that should be described. CP-ADL extends the taxonomy with the means to describe relationships between semantically distinct aspects, despite the complex relationships that exist for attacks on cyber-physical systems. The language is capable of expressing relationships between attack descriptions, including the links between attack steps and the folding of attack details.
(No abstract.)
— Recent experimental studies have shown that traf- fic management systems are vulnerable to cyber-attacks on sensor data. This paper studies the vulnerability of fixedtime control of signalized intersections when sensors measuring traffic flow information are compromised and perturbed by an adversary. The problems are formulated by considering three malicious objectives: 1) worst-case network accumulation, which aims to destabilize the overall network as much as possible; 2) worst-case lane accumulation, which aims to cause worstcase accumulation on some target lanes; and 3) risk-averse target accumulation, which aims to reach a target accumulation by making the minimum perturbation to sensor data. The problems are solved using bilevel programming optimization methods. Finally, a case study of a real network is used to illustrate the results.