Visible to the public Biblio

Filters: Author is Edward A. Cranford  [Clear All Filters]
2019-09-24
Edward A. Cranford, Christian Lebiere, Cleotilde Gonzalez, Sarah Cooney, Phebe Vayanos, Milind Tambe.  2018.  Learning about Cyber Deception through Simulations: Predictions of Human Decision Making with Deceptive Signals in Stackelberg Security Games. CogSci.

To improve cyber defense, researchers have developed algorithms to allocate limited defense resources optimally. Through signaling theory, we have learned that it is possible to trick the human mind when using deceptive signals. The present work is an initial step towards developing a psychological theory of cyber deception. We use simulations to investigate how humans might make decisions under various conditions of deceptive signals in cyber-attack scenarios. We created an Instance-Based Learning (IBL) model of the attacker decisions using the ACT-R cognitive architecture. We ran simulations against the optimal deceptive signaling algorithm and against four alternative deceptive signal schemes. Our results show that the optimal deceptive algorithm is more effective at reducing the probability of attack and protecting assets compared to other signaling conditions, but it is not perfect. These results shed some light on the expected effectiveness of deceptive signals for defense. The implications of these findings are discussed.

2019-09-12
Sarah Cooney, Phebe Vayanos, Thanh H. Nguyen, Cleotilde Gonzalez, Christian Lebiere, Edward A. Cranford, Milind Tambe.  2019.  Warning Time: Optimizing Strategic Signaling for Security Against Boundedly Rational Adversaries. Team Core USC.

Defender-attacker Stackelberg security games (SSGs) have been applied for solving many real-world security problems. Recent work in SSGs has incorporated a deceptive signaling scheme into the SSG model, where the defender strategically reveals information about her defensive strategy to the attacker, in order to influence the attacker’s decision making for the defender’s own benefit. In this work, we study the problem of signaling in security games against a boundedly rational attacker. 

2019-09-09
Edward A. Cranford, Christian Lebiere, Cleotilde Gonzalez, Sarah Cooney, Phebe Vayanos, Milind Tambe.  2018.  Learning about Cyber Deception through Simulations: Predictions of Human Decision Making with Deceptive Signals in Stackelberg Security Games. CogSci.

To improve cyber defense, researchers have developed algorithms to allocate limited defense resources optimally. Through signaling theory, we have learned that it is possible to trick the human mind when using deceptive signals. The present work is an initial step towards developing a psychological theory of cyber deception. We use simulations to investigate how humans might make decisions under various conditions of deceptive signals in cyber-attack scenarios. We created an Instance-Based Learning (IBL) model of the attacker decisions using the ACT-R cognitive architecture. We ran simulations against the optimal deceptive signaling algorithm and against four alternative deceptive signal schemes. Our results show that the optimal deceptive algorithm is more effective at reducing the probability of attack and protecting assets compared to other signaling conditions, but it is not perfect. These results shed some light on the expected effectiveness of deceptive signals for defense. The implications of these findings are discussed.