Visible to the public Biblio

Filters: Keyword is human factors  [Clear All Filters]
2019-09-20
Robert Gutzwiller, Sunny Fugate, Benjamin Sawyer, Hancock, PA.  2016.  The Human Factors of Cyber Network Defense. Sage Journals.

Technology’s role in the fight against malicious cyber-attacks is critical to the increasingly networked world of today. Yet, technology does not exist in isolation: the human factor is an aspect of cyber-defense operations with increasingly recognized importance. Thus, the human factors community has a unique responsibility to help create and validate cyber defense systems according to basic principles and design philosophy. Concurrently, the collective science must advance. These goals are not mutually exclusive pursuits: therefore, toward both these ends, this research provides cyber-cognitive links between cyber defense challenges and major human factors and ergonomics (HFE) research areas that offer solutions and instructive paths forward. In each area, there exist cyber research opportunities and realms of core HFE science for exploration. We raise the cyber defense domain up to the HFE community at-large as a sprawling area for scientific discovery and contribution.

2019-09-13
P. Damacharla, A. Y. Javaid, J. J. Gallimore, V. K. Devabhaktuni.  2018.  Common Metrics to Benchmark Human-Machine Teams (HMT): A Review. IEEE Access. 6:38637-38655.

A significant amount of work is invested in human-machine teaming (HMT) across multiple fields. Accurately and effectively measuring system performance of an HMT is crucial for moving the design of these systems forward. Metrics are the enabling tools to devise a benchmark in any system and serve as an evaluation platform for assessing the performance, along with the verification and validation, of a system. Currently, there is no agreed-upon set of benchmark metrics for developing HMT systems. Therefore, identification and classification of common metrics are imperative to create a benchmark in the HMT field. The key focus of this review is to conduct a detailed survey aimed at identification of metrics employed in different segments of HMT and to determine the common metrics that can be used in the future to benchmark HMTs. We have organized this review as follows: identification of metrics used in HMTs until now, and classification based on functionality and measuring techniques. Additionally, we have also attempted to analyze all the identified metrics in detail while classifying them as theoretical, applied, real-time, non-real-time, measurable, and observable metrics. We conclude this review with a detailed analysis of the identified common metrics along with their usage to benchmark HMTs.

2019-09-12
Frank Stech, Kristin Heckman.  2018.  Human Nature and Cyber Weaponry: Use of Denial and Deception in Cyber Counterintelligence. Springer Link. :13-27.

With the increase use of cyber weapons for Internet-based cyber espionage, the need for cyber counterintelligence has become apparent, but counterintelligence remains more art than science because of its focus on tricking human nature—the way people think, feel, and behave. Nevertheless, counterintelligence theory and practice have been extended to domains such as industry and finance, and can be applied to cyber security and active cyber defense. Nonetheless, there are relatively few explicit counterintelligence applications to cyber security reported in the open literature. This chapter describes the mechanisms of cyber denial and deception operations, using a cyber deception methods matrix and a cyber deception chain to build a tailored active cyber defense system for cyber counterintelligence. Cyber counterintelligence with cyber deception can mitigate cyber spy actions within the cyber espionage “kill chain.” The chapter describes how defenders can apply cyber denial and deception in their cyber counterintelligence operations to mitigate a cyber espionage threat and thwart cyber spies. The chapter provides a hypothetical case, based on real cyber espionage operations by a state actor.

2019-09-09
Veksler, Vladislav D, Buchler, Norbou, Hoffman, Blaine E, Cassenti, Daniel N, Sample, Char, Sugrim, Shridat.  2018.  Simulations in Cyber-Security: A Review of Cognitive Modeling of Network Attackers, Defenders, and Users. Frontiers in psychology. 9:691.

Computational models of cognitive processes may be employed in cyber-security tools, experiments, and simulations to address human agency and effective decision-making in keeping computational networks secure. Cognitive modeling can addresses multi-disciplinary cyber-security challenges requiring cross-cutting approaches over the human and computational sciences such as the following: (a) adversarial reasoning and behavioral game theory to predict attacker subjective utilities and decision likelihood distributions, (b) human factors of cyber tools to address human system integration challenges, estimation of defender cognitive states, and opportunities for automation, (c) dynamic simulations involving attacker, defender, and user models to enhance studies of cyber epidemiology and cyber hygiene, and (d) training effectiveness research and training scenarios to address human cyber-security performance, maturation of cyber-security skill sets, and effective decision-making. Models may be initially constructed at the group-level based on mean tendencies of each subject's subgroup, based on known statistics such as specific skill proficiencies, demographic characteristics, and cultural factors. For more precise and accurate predictions, cognitive models may be fine-tuned to each individual attacker, defender, or user profile, and updated over time (based on recorded behavior) via techniques such as model tracing and dynamic parameter fitting.

G. Klien, D. D. Woods, J. M. Bradshaw, R. R. Hoffman, P. J. Feltovich.  2004.  Ten challenges for making automation a "team player" in joint human-agent activity. IEEE Intelligent Systems. 19:91-95.

We propose 10 challenges for making automation components into effective "team players" when they interact with people in significant ways. Our analysis is based on some of the principles of human-centered computing that we have developed individually and jointly over the years, and is adapted from a more comprehensive examination of common ground and coordination.