Biblio
In the context of insiders, preventive security measures have a high likelihood of failing because insiders ought to have sufficient privileges to perform their jobs. Instead, in this paper, we propose to treat the insider threat by a detective measure that holds an insider accountable in case of violations. However, to enable accountability, we need to create causal models that support reasoning about the causality of a violation. Current security models (e.g., attack trees) do not allow that. Still, they are a useful source for creating causal models. In this paper, we discuss the value added by causal models in the security context. Then, we capture the interaction between attack trees and causal models by proposing an automated approach to extract the latter from the former. Our approach considers insider-specific attack classes such as collusion attacks and causal-model-specific properties like preemption relations. We present an evaluation of the resulting causal models’ validity and effectiveness, in addition to the efficiency of the extraction process.
The rapid deployment of digital systems into all aspects of daily life requires embedding social constructs into the digital world. Because of the complexity of these systems, there is a need for technical support to understand their actions. Social concepts, such as explainability, accountability, and responsibility rely on a notion of actual causality. Encapsulated in the Halpern and Pearl’s (HP) definition, actual causality conveniently integrates into the socio-technical world if operationalized in concrete applications. To the best of our knowledge, theories of actual causality such as the HP definition are either applied in correspondence with domain-specific concepts (e.g., a lineage of a database query) or demonstrated using straightforward philosophical examples. On the other hand, there is a lack of explicit automated actual causality theories and operationalizations for helping understand the actions of systems. Therefore, this paper proposes a unifying framework and an interactive platform (Actual Causality Canvas) to address the problem of operationalizing actual causality for different domains and purposes. We apply this framework in such areas as aircraft accidents, unmanned aerial vehicles, and artificial intelligence (AI) systems for purposes of forensic investigation, fault diagnosis, and explainable AI. We show that with minimal effort, using our general-purpose interactive platform, actual causality reasoning can be integrated into these domains.
Causal Models are increasingly suggested as a mean to reason about the behavior of cyber-physical systems in socio-technical contexts. They allow us to analyze courses of events and reason about possible alternatives. Until now, however, such reasoning is confined to the technical domain and limited to single systems or at most groups of systems. The humans that are an integral part of any such socio-technical system are usually ignored or dealt with by “expert judgment”. We show how a technical causal model can be extended with models of human behavior to cover the complexity and interplay between humans and technical systems. This integrated socio-technical causal model can then be used to reason not only about actions and decisions taken by the machine, but also about those taken by humans interacting with the system. In this paper we demonstrate the feasibility of merging causal models about machines with causal models about humans and illustrate the usefulness of this approach with a highly automated vehicle example.
Recent formal approaches towards causality have made the concept ready for incorporation into the technical world. However, causality reasoning is computationally hard; and no general algorithmic approach exists that efficiently infers the causes for effects. Thus, checking causality in the context of complex, multi-agent, and distributed socio-technical systems is a significant challenge. Therefore, we conceptualize an intelligent and novel algorithmic approach towards checking causality in acyclic causal models with binary variables, utilizing the optimization power in the solvers of the Boolean Satisfiability Problem (SAT). We present two SAT encodings, and an empirical evaluation of their efficiency and scalability. We show that causality is computed efficiently in less than 5 seconds for models that consist of more than 4000 variables.
Unlike faults in classical systems, faults in Cyber-Physical Systems will often be caused by the system's interaction with its physical environment and social context, rendering these faults harder to diagnose. To complicate matters further, knowledge about the behavior and failure modes of a system are often collected in different models. We show how three of those models, namely attack trees, fault trees, and timed failure propagation graphs can be converted into Halpern-Pearl causal models, combined into a single holistic causal model, and analyzed with actual causality reasoning to detect and explain unwanted events. Halpern-Pearl models have several advantages over their source models, particularly that they allow for modeling preemption, consider the non-occurrence of events, and can incorporate additional domain knowledge. Furthermore, such holistic models allow for analysis across model boundaries, enabling detection and explanation of events that are beyond a single model. Our contribution here delineates a semi-automatic process to (1) convert different models into Halpern-Pearl causal models, (2) combine these models into a single holistic model, and (3) reason about system failures. We illustrate our approach with the help of an Unmanned Aerial Vehicle case study.