Biblio
The rapid deployment of digital systems into all aspects of daily life requires embedding social constructs into the digital world. Because of the complexity of these systems, there is a need for technical support to understand their actions. Social concepts, such as explainability, accountability, and responsibility rely on a notion of actual causality. Encapsulated in the Halpern and Pearl’s (HP) definition, actual causality conveniently integrates into the socio-technical world if operationalized in concrete applications. To the best of our knowledge, theories of actual causality such as the HP definition are either applied in correspondence with domain-specific concepts (e.g., a lineage of a database query) or demonstrated using straightforward philosophical examples. On the other hand, there is a lack of explicit automated actual causality theories and operationalizations for helping understand the actions of systems. Therefore, this paper proposes a unifying framework and an interactive platform (Actual Causality Canvas) to address the problem of operationalizing actual causality for different domains and purposes. We apply this framework in such areas as aircraft accidents, unmanned aerial vehicles, and artificial intelligence (AI) systems for purposes of forensic investigation, fault diagnosis, and explainable AI. We show that with minimal effort, using our general-purpose interactive platform, actual causality reasoning can be integrated into these domains.
Accountability is the property of a system that enables the uncovering of causes for events and helps understand who or what is responsible for these events. Definitions and interpretations of accountability differ; however, they are typically expressed in natural language that obscures design decisions and the impact on the overall system. This paper presents a formal model to express the accountability properties of cyber-physical systems. To illustrate the usefulness of our approach, we demonstrate how three different interpretations of accountability can be expressed using the proposed model and describe the implementation implications through a case study. This formal model can be used to highlight context specific-elements of accountability mechanisms, define their capabilities, and express different notions of accountability. In addition, it makes design decisions explicit and facilitates discussion, analysis and comparison of different approaches.
Causal Models are increasingly suggested as a mean to reason about the behavior of cyber-physical systems in socio-technical contexts. They allow us to analyze courses of events and reason about possible alternatives. Until now, however, such reasoning is confined to the technical domain and limited to single systems or at most groups of systems. The humans that are an integral part of any such socio-technical system are usually ignored or dealt with by “expert judgment”. We show how a technical causal model can be extended with models of human behavior to cover the complexity and interplay between humans and technical systems. This integrated socio-technical causal model can then be used to reason not only about actions and decisions taken by the machine, but also about those taken by humans interacting with the system. In this paper we demonstrate the feasibility of merging causal models about machines with causal models about humans and illustrate the usefulness of this approach with a highly automated vehicle example.
Unlike faults in classical systems, faults in Cyber-Physical Systems will often be caused by the system's interaction with its physical environment and social context, rendering these faults harder to diagnose. To complicate matters further, knowledge about the behavior and failure modes of a system are often collected in different models. We show how three of those models, namely attack trees, fault trees, and timed failure propagation graphs can be converted into Halpern-Pearl causal models, combined into a single holistic causal model, and analyzed with actual causality reasoning to detect and explain unwanted events. Halpern-Pearl models have several advantages over their source models, particularly that they allow for modeling preemption, consider the non-occurrence of events, and can incorporate additional domain knowledge. Furthermore, such holistic models allow for analysis across model boundaries, enabling detection and explanation of events that are beyond a single model. Our contribution here delineates a semi-automatic process to (1) convert different models into Halpern-Pearl causal models, (2) combine these models into a single holistic model, and (3) reason about system failures. We illustrate our approach with the help of an Unmanned Aerial Vehicle case study.