Visible to the public BiblioConflict Detection Enabled

Filters: Author is David Holmberg  [Clear All Filters]
2021-12-21
David Holmberg, Martin Burns, Steven Bushby, Avi Gopstein, Tom McDermott, Yingying Tang, Qiuhua Huang, Annabelle Pratt, Mark Ruth, Yogesh Bichpuriya et al..  2019.  NIST Transactive Energy Modeling and Simulation Challenge Phase II Final Report.

The NIST Transactive Energy (TE) Modeling and Simulation Challenge for the Smart Grid (Challenge) spanned from 2015 to 2018. The TE Challenge was initiated to identify simulation tools and expertise that might be developed or combined in co-simulation platforms to enable the evaluation of transactive energy approaches. Phase I of the Challenge spanned 2015 to 2016, with team efforts that improved understanding of TE concepts, identified relevant simulation tools and co-simulation platforms, and inspired the development of a TE co-simulation abstract component model that paved the way for Phase II. The Phase II effort spanned Spring 2017 through Spring 2018, where the teams collaboratively developed a specific TE problem scenario, a common grid topology, and common reporting metrics to enable direct comparison of results from simulation of each team's TE approach for the defined scenario. This report presents an overview of the TE Challenge, the TE abstract component model, and the common scenario. It also compiles the individual Challenge participants' research reports from Phase II. The common scenario involves a weather event impacting a distribution grid with very high penetration of photovoltaics, leading to voltage regulation challenges that are to be mitigated by TE methods. Four teams worked with this common scenario and different TE models to incentivize distributed resource response to voltage deviations, performing these simulations on different simulation platforms. A fifth team focused on a co-simulation platform that can be used for online TE simulations with existing co-simulation components. The TE Challenge Phase II has advanced co-simulation modeling tools and platforms for TE system performance analysis, developed a referenceable TE scenario that can support ongoing comparative simulations, and demonstrated various TE approaches for managing voltage on a distribution grid with high penetration of photovoltaics.