Biblio
Traditional power systems education and training is flanked by the demand for coping with the rising complexity of energy systems, like the integration of renewable and distributed generation, communication, control and information technology. A broad understanding of these topics by the current/future researchers and engineers is becoming more and more necessary. This paper identifies educational and training needs addressing the higher complexity of intelligent energy systems. Education needs and requirements are discussed, such as the development of systems-oriented skills and cross-disciplinary learning. Education and training possibilities and necessary tools are described focusing on classroom but also on laboratory-based learning methods. In this context, experiences of using notebooks, co-simulation approaches, hardware-in-the-loop methods and remote labs experiments are discussed.
The recent attention towards research and development in cyber-physical energy systems has introduced the necessity of emerging multi-domain co-simulation tools. Different educational, research and industrial efforts have been set to tackle the co-simulation topic from several perspectives. The majority of previous works has addressed the standardization of models and interfaces for data exchange, automation of simulation, as well as improving performance and accuracy of co-simulation setups. Furthermore, the domains of interest so far have involved communication, control, markets and the environment in addition to physical energy systems. However, the current characteristics and state of co-simulation testbeds need to be re-evaluated for future research demands. These demands vary from new domains of interest, such as human and social behavior models, to new applications of co-simulation, such as holistic prognosis and system planning. This paper aims to formulate these research demands that can then be used as a road map and guideline for future development of co-simulation in cyber-physical energy systems.
Evaluating new technological developments for energy systems is becoming more and more complex. The overall application environment is a continuously growing and interconnected cyber-physical system so that analytical assessment is practically impossible to realize. Consequently, new solutions must be evaluated in simulation studies. Due to the interdisciplinarity of the simulation scenarios, various heterogeneous tools must be connected. This approach is known as co-simulation. During the last years, different approaches have been developed or adapted for applications in energy systems. In this paper, two co-simulation approaches are compared that follow generic, versatile concepts. The tool MOSAIK, which has been explicitly developed for the purpose of co-simulation in complex energy systems, is compared to the High Level Architecture (HLA), which possesses a domain-independent scope but is often employed in the energy domain. The comparison is twofold, considering the tools’ conceptual architectures as well as results from the simulation of representative test cases. It suggests that MOSAIK may be the better choice for entry-level, prototypical co-simulation while HLA is more suited for complex and extensive studies.
Smart grid systems are characterized by high complexity due to interactions between a traditional passive network and active power electronic components, coupled using communication links. Additionally, automation and information technology plays an important role in order to operate and optimize such cyber-physical energy systems with a high(er) penetration of fluctuating renewable generation and controllable loads. As a result of these developments the validation on the system level becomes much more important during the whole engineering and deployment process, today. In earlier development stages and for larger system configurations laboratory-based testing is not always an option. Due to recent developments, simulation-based approaches are now an appropriate tool to support the development, implementation, and roll-out of smart grid solutions. This paper discusses the current state of simulation-based approaches and outlines the necessary future research and development directions in the domain of power and energy systems.