Biblio
Simulation-based analysis is essential in the model-based design process of Cyber-Physical Systems (CPS). Since heterogeneity is inherent to CPS, virtual prototyping of CPS designs and the simulation of their behavior in various environments typically involve a number of physical and computation/ communication domains interacting with each other. Affordability of the model-based design process makes the use of existing domain-specific modeling and simulation tools all but mandatory. However, this pressure establishes the requirement for integrating the domain-specific models and simulators into a semantically consistent and efficient system-of-system simulation. The focus of the paper is the interoperability of popular integration platforms supporting heterogeneous multi-model simulations. We examine the relationship among three existing platforms: the High-Level Architecture (HLA)-based CPS Wind Tunnel (CPSWT), MOSAIK, and the Functional Mockup Unit (FMU). We discuss approaches to establish interoperability and present results of ongoing work in the context of an example.
Increasing complexity in the power system and the transformation towards a smart grid lead to the necessity of new tools and methods for the development and testing of new technologies. One testing method is co-simulation, which allows coupling simulation components from different domains to test their interaction. Because the manual configuration of complex large-scale co-simulation scenarios can be error-prone, we propose an approach for assisting the user in the development of co-simulation scenarios. Our approach uses an information model, a component catalog implemented in a Semantic Media Wiki, and Semantic Web technologies to assist the high-level modeling of co-simulation scenarios, recommend suitable simulation components, and validate co-simulation scenarios. This assistance aims to improve the usability of co-simulation in the development of interdisciplinary, large-scale scenarios.
Surrogate models have proved to be a suitable replacement for complex simulation models in various applications. Runtime considerations, complexity reduction and privacy concerns play a role in the decision to use a surrogate model. The choice of an appropriate surrogate model though is often tedious and largely dependent on the individual model properties. A tool can help to facilitate this process. To this end, we present a surrogate modeling process supporting tool that simplifies the process of generation and application of surrogate models in a co-simulation framework. We evaluate the tool in our application context, energy system co-simulation, and apply it to different simulation models from that domain with a focus on decentralized energy units.
Simulation-based analysis is essential in the model-based design process of Cyber-Physical Systems (CPS). Since heterogeneity is inherent to CPS, virtual prototyping of CPS designs and the simulation of their behavior in various environments typically involve a number of physical and computation/communication domains interacting with each other. Affordability of the model-based design process makes the use of existing domain-specific modeling and simulation tools all but mandatory. However, this pressure establishes the requirement for integrating the domain-specific models and simulators into a semantically consistent and efficient system-of-system simulation. The focus of the paper is the interoperability of popular integration platforms supporting heterogeneous multi-model simulations. We examine the relationship among three existing platforms: the High-Level Architecture (HLA)-based CPS Wind Tunnel (CPSWT), MOSAIK, and the Functional Mockup Unit (FMU). We discuss approaches to establish interoperability and present results of ongoing work in the context of an example.
To reshape energy systems towards renewable energy resources, decision makers need to decide today on how to make the transition. Energy scenarios are widely used to guide decision making in this context. While considerable effort has been put into developing energy scenarios, researchers have pointed out three requirements for energy scenarios that are not fulfilled satisfactorily yet: The development and evaluation of energy scenarios should (1) incorporate the concept of sustainability, (2) provide decision support in a transparent way and (3) be replicable for other researchers. To meet these requirements, we combine different methodological approaches: story-and-simulation (SAS) scenarios, multi-criteria decision-making (MCDM), information modeling and co-simulation. We show in this paper how the combination of these methods can lead to an integrated approach for sustainability evaluation of energy scenarios with automated information exchange. Our approach consists of a sustainability evaluation process (SEP) and an information model for modeling dependencies. The objectives are to guide decisions towards sustainable development of the energy sector and to make the scenario and decision support processes more transparent for both decision makers and researchers.
The gradual deployment of intelligent and coordinated devices in the electrical power system needs careful investigation of the interactions between the various domains involved. Especially due to the coupling between ICT and power systems a holistic approach for testing and validating is required. Taking existing (quasi-) standardised smart grid system and test specification methods as a starting point, we are developing a holistic testing and validation approach that allows a very flexible way of assessing the system level aspects by various types of experiments (including virtual, real, and mixed lab settings). This paper describes the formal holistic test case specification method and applies it to a particular co-simulation experimental setup. The various building blocks of such a simulation (i.e., FMI, mosaik, domain-specific simulation federates) are covered in more detail. The presented method addresses most modeling and specification challenges in cyber-physical energy systems and is extensible for future additions such as uncertainty quantification.
Traditional power systems education and training is flanked by the demand for coping with the rising complexity of energy systems, like the integration of renewable and distributed generation, communication, control and information technology. A broad understanding of these topics by the current/future researchers and engineers is becoming more and more necessary. This paper identifies educational and training needs addressing the higher complexity of intelligent energy systems. Education needs and requirements are discussed, such as the development of systems-oriented skills and cross-disciplinary learning. Education and training possibilities and necessary tools are described focusing on classroom but also on laboratory-based learning methods. In this context, experiences of using notebooks, co-simulation approaches, hardware-in-the-loop methods and remote labs experiments are discussed.
The recent attention towards research and development in cyber-physical energy systems has introduced the necessity of emerging multi-domain co-simulation tools. Different educational, research and industrial efforts have been set to tackle the co-simulation topic from several perspectives. The majority of previous works has addressed the standardization of models and interfaces for data exchange, automation of simulation, as well as improving performance and accuracy of co-simulation setups. Furthermore, the domains of interest so far have involved communication, control, markets and the environment in addition to physical energy systems. However, the current characteristics and state of co-simulation testbeds need to be re-evaluated for future research demands. These demands vary from new domains of interest, such as human and social behavior models, to new applications of co-simulation, such as holistic prognosis and system planning. This paper aims to formulate these research demands that can then be used as a road map and guideline for future development of co-simulation in cyber-physical energy systems.
The complex and often safety-critical nature of cyber-physical energy systems makes validation a key challenge in facilitating the energy transition, especially when it comes to the testing on system level. Reliable and reproducible validation experiments can be guided by the concept of design of experiments, which is, however, so far not fully adopted by researchers. This paper suggests a structured guideline for design of experiments application within the holistic testing procedure suggested by the European ERIGrid project. In this paper, a general workflow as well as a practical example are provided with the aim to give domain experts a basic understanding of design of experiments compliant testing.
Evaluating new technological developments for energy systems is becoming more and more complex. The overall application environment is a continuously growing and interconnected cyber-physical system so that analytical assessment is practically impossible to realize. Consequently, new solutions must be evaluated in simulation studies. Due to the interdisciplinarity of the simulation scenarios, various heterogeneous tools must be connected. This approach is known as co-simulation. During the last years, different approaches have been developed or adapted for applications in energy systems. In this paper, two co-simulation approaches are compared that follow generic, versatile concepts. The tool MOSAIK, which has been explicitly developed for the purpose of co-simulation in complex energy systems, is compared to the High Level Architecture (HLA), which possesses a domain-independent scope but is often employed in the energy domain. The comparison is twofold, considering the tools’ conceptual architectures as well as results from the simulation of representative test cases. It suggests that MOSAIK may be the better choice for entry-level, prototypical co-simulation while HLA is more suited for complex and extensive studies.
Smart grid systems are characterized by high complexity due to interactions between a traditional passive network and active power electronic components, coupled using communication links. Additionally, automation and information technology plays an important role in order to operate and optimize such cyber-physical energy systems with a high(er) penetration of fluctuating renewable generation and controllable loads. As a result of these developments the validation on the system level becomes much more important during the whole engineering and deployment process, today. In earlier development stages and for larger system configurations laboratory-based testing is not always an option. Due to recent developments, simulation-based approaches are now an appropriate tool to support the development, implementation, and roll-out of smart grid solutions. This paper discusses the current state of simulation-based approaches and outlines the necessary future research and development directions in the domain of power and energy systems.