Visible to the public BiblioConflict Detection Enabled

Filters: Keyword is traffic  [Clear All Filters]
2021-08-13
Maike Schwammberger.  2021.  Safe Controllers for Autonomous Urban Traffic Manoeuvres - Bringing together Formal Methods and Reality.
impulse talk at “Safety Critical Human-Cyber-Physical Systems -- joint workshop in celebration of 40 years of collaboration between Groningen und Oldenburg Universities”, 10/20
2019-08-21
Hauer, Florian, Raphael Stern, Alexander Pretschner.  2019.  Selecting Flow Optimal System Parameters for Automated Driving Systems . 22nd International Conference on Intelligent Transportation Systems.

Driver assist features such as adaptive cruise control (ACC) and highway assistants are becoming increasingly prevalent on commercially available vehicles. These systems are typically designed for safety and rider comfort. However, these systems are often not designed with the quality of the overall traffic flow in mind. For such a system to be beneficial to the traffic flow, it must be string stable and minimize the inter-vehicle spacing to maximize throughput, while still being safe. We propose a methodology to select autonomous driving system parameters that are both safe and string stable using the existing control framework already implemented on commercially available ACC vehicles. Optimal parameter values are selected via model-based optimization for an example highway assistant controller with path planning.

Werner Damm, Martin Fränzle, Willem Hagemann, Paul Kröger, Astrid Rakow.  2019.  Justification Based Reasoning in Dynamic Conflict Resolution. 4th Workshop on Formal Reasoning about Causation, Responsibility, and Explanations in Science and Technology.

We study conflict situations that dynamically arise in traffic scenarios, where different agents try to achieve their set of goals and have to decide on what to do based on their local perception.
We distinguish several types of conflicts for this setting. In order to enable modelling of conflict situations and the reasons for conflicts, we present a logical framework that adopts concepts from epistemic and modal logic, justification and temporal logic. Using this framework, we illustrate how conflicts can be identified and how we derive a chain of justifications leading to this conflict. We discuss how conflict resolution can be done when a vehicle has local, incomplete information, vehicle to vehicle communication (V2V) and partially ordered goals.