Tor is used daily by millions of users, including journalists, militaries and law enforcement, activists, companies, whistleblowers, and ordinary people, to protect their web browsing against surveillance. However, the internal architecture of Tor is very complicated. This complexity creates performance problems, and it makes security analysis difficult. Furthermore, Tor's encryption will be broken by future quantum computers. Spies are recording larger and larger fractions of Internet traffic; once the spies build a large enough quantum computer, they will be able to retroactively see who was saying what to whom. This FASOR ("Faster and Stronger Onion Routing") project is interdisciplinary, combining theory and practice, with research covering protocol design, software engineering, post-quantum cryptography, and privacy analysis. FASOR brings together three complementary research directions. The first component is Tor itself, with a deployed user base in the millions, broad deployment experience, and a history of analyzing privacy protocols to discover vulnerabilities. The second component is "MinimaLT", a clean-slate low-latency encrypted network protocol that reduces complexity and increases security and privacy. The third component is post-quantum cryptography, which introduces cryptographic algorithms that resist quantum computers, but which also poses efficiency and network protocol integration issues. The FASOR project unifies these three components, increasing performance, providing high-security post-quantum cryptography, reducing duplication among different system layers, making it easier to introduce new functionality, and reducing surface area exposed to attackers. The FASOR project will also analyze these protocols for new types of vulnerabilities and threats, and expose and clarify new research problems for the world.