Ammar, Mahmoud, Crispo, Bruno, Tsudik, Gene.
2020.
SIMPLE: A Remote Attestation Approach for Resource-constrained IoT devices. 2020 ACM/IEEE 11th International Conference on Cyber-Physical Systems (ICCPS). :247—258.
Remote Attestation (RA) is a security service that detects malware presence on remote IoT devices by verifying their software integrity by a trusted party (verifier). There are three main types of RA: software (SW)-, hardware (HW)-, and hybrid (SW/HW)-based. Hybrid techniques obtain secure RA with minimal hardware requirements imposed on the architectures of existing microcontrollers units (MCUs). In recent years, considerable attention has been devoted to hybrid techniques since prior software-based ones lack concrete security guarantees in a remote setting, while hardware-based approaches are too costly for low-end MCUs. However, one key problem is that many already deployed IoT devices neither satisfy minimal hardware requirements nor support hardware modifications, needed for hybrid RA. This paper bridges the gap between software-based and hybrid RA by proposing a novel RA scheme based on software virtualization. In particular, it proposes a new scheme, called SIMPLE, which meets the minimal hardware requirements needed for secure RA via reliable software. SIMPLE depends on a formally-verified software-based memory isolation technique, called Security MicroVisor (Sμ V). Its reliability is achieved by extending the formally-verified safety and correctness properties to cover the entire software architecture of SIMPLE. Furthermore, SIMPLE is used to construct SIMPLE+, an efficient swarm attestation scheme for static and dynamic heterogeneous IoT networks. We implement and evaluate SIMPLE and SIMPLE+ on Atmel AVR architecture, a common MCU platform.
Yu, Chen, Chen, Liquan, Lu, Tianyu.
2020.
A Direct Anonymous Attestation Scheme Based on Mimic Defense Mechanism. 2020 International Conference on Internet of Things and Intelligent Applications (ITIA). :1—5.
Machine-to-Machine (M2M) communication is a essential subset of the Internet of Things (IoT). Secure access to communication network systems by M2M devices requires the support of a secure and efficient anonymous authentication protocol. The Direct Anonymous Attestation (DAA) scheme in Trustworthy Computing is a verified security protocol. However, the existing defense system uses a static architecture. The “mimic defense” strategy is characterized by active defense, which is not effective against continuous detection and attack by the attacker. Therefore, in this paper, we propose a Mimic-DAA scheme that incorporates mimic defense to establish an active defense scheme. Multiple heterogeneous and redundant actuators are used to form a DAA verifier and optimization is scheduled so that the behavior of the DAA verifier unpredictable by analysis. The Mimic-DAA proposed in this paper is capable of forming a security mechanism for active defense. The Mimic-DAA scheme effectively safeguard the unpredictability, anonymity, security and system-wide security of M2M communication networks. In comparison with existing DAA schemes, the scheme proposed in this paper improves the safety while maintaining the computational complexity.
Chen, Ziyu, Zhu, Jizhong, Li, Shenglin, Luo, Tengyan.
2020.
Detection of False Data Injection Attack in Automatic Generation Control System with Wind Energy based on Fuzzy Support Vector Machine. IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society. :3523—3528.
False data injection attack (FDIA) destroys the automatic generation control (AGC) system and leads to unstable operation of the power system. Fast and accurate detection can help prevent and disrupt malicious attacks. This paper proposes an improved detection method, which is combined with fuzzy theory and support vector machine (SVM) to identify various types of attacks. The impacts of different types of FDIAs on the AGC system are analyzed, and the reliability of the method is proved by a large number of experimental data. This experiment is simulated on a single-area LFC system and the effects of adding a wind storage system were compared in a dynamic model. Simulation studies also show a higher accuracy of fuzzy support vector machine (FSVM) than traditional SVM and fuzzy pattern trees (FPTs).
Camenisch, Jan, Drijvers, Manu, Lehmann, Anja, Neven, Gregory, Towa, Patrick.
2020.
Zone Encryption with Anonymous Authentication for V2V Communication. 2020 IEEE European Symposium on Security and Privacy (EuroS P). :405—424.
Vehicle-to-vehicle (V2V) communication systems are currently being prepared for real-world deployment, but they face strong opposition over privacy concerns. Position beacon messages are the main culprit, being broadcast in cleartext and pseudonymously signed up to 10 times per second. So far, no practical solutions have been proposed to encrypt or anonymously authenticate V2V messages. We propose two cryptographic innovations that enhance the privacy of V2V communication. As a core contribution, we introduce zone-encryption schemes, where vehicles generate and authentically distribute encryption keys associated to static geographic zones close to their location. Zone encryption provides security against eavesdropping, and, combined with a suitable anonymous authentication scheme, ensures that messages can only be sent by genuine vehicles, while adding only 224 Bytes of cryptographic overhead to each message. Our second contribution is an authentication mechanism fine-tuned to the needs of V2V which allows vehicles to authentically distribute keys, and is called dynamic group signatures with attributes. Our instantiation features unlimited locally generated pseudonyms, negligible credential download-and-storage costs, identity recovery by a trusted authority, and compact signatures of 216 Bytes at a 128-bit security level.
Xia, Yusheng, Chen, Rongmao, Su, Jinshu, Pan, Chen, Su, Han.
2020.
Hybrid Routing: Towards Resilient Routing in Anonymous Communication Networks. ICC 2020 - 2020 IEEE International Conference on Communications (ICC). :1—7.
Anonymous communication networks (ACNs) are intended to protect the metadata during communication. As classic ACNs, onion mix-nets are famous for strong anonymity, in which the source defines a static path and wraps the message multi-times with the public keys of nodes on the path, through which the message is relayed to the destination. However, onion mix-nets lacks in resilience when the static on-path mixes fail. Mix failure easily results in message loss, communication failure, and even specific attacks. Therefore, it is desirable to achieve resilient routing in onion mix-nets, providing persistent routing capability even though node failure. The state-of-theart solutions mainly adopt mix groups and thus need to share secret keys among all the group members which may cause single point of failure. To address this problem, in this work we propose a hybrid routing approach, which embeds the onion mix-net with hop-by-hop routing to increase routing resilience. Furthermore, we propose the threshold hybrid routing to achieve better key management and avoid single point of failure. As for experimental evaluations, we conduct quantitative analysis of the resilience and realize a local T-hybrid routing prototype to test performance. The experimental results show that our proposed routing strategy increases routing resilience effectively, at the expense of acceptable latency.
Zhang, Mingyue, Zhou, Junlong, Cao, Kun, Hu, Shiyan.
2020.
Trusted Anonymous Authentication For Vehicular Cyber-Physical Systems. 2020 International Conferences on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics (Cybermatics). :37—44.
In vehicular cyber-physical systems, the mounted cameras on the vehicles, together with the fixed roadside cameras, can produce pictorial data for multiple purposes. In this process, ensuring the security and privacy of vehicles while guaranteeing efficient data transmission among vehicles is critical. This motivates us to propose a trusted anonymous authentication scheme for vehicular cyber-physical systems and Internet-of-Things. Our scheme is designed based on a three-tier architecture which contains cloud layer, fog layer, and user layer. It utilizes bilinear-free certificateless signcryption to realize a secure and trusted anonymous authentication efficiently. We verify its effectiveness through theoretical analyses in terms of correctness, security, and efficiency. Furthermore, our simulation results demonstrate that the communication overhead, the computation overhead, and the packet loss rate of the proposed scheme are significantly better than those of the state-of-the-art techniques. Particularly, the proposed scheme can speed up the computation process at least 10× compared to all the state-of-the-art approaches.
Zhao, Haining, Chen, Liquan.
2020.
Artificial Intelligence Security Issues and Responses. 2020 IEEE 6th International Conference on Computer and Communications (ICCC). :2276—2283.
As a current disruptive and transformative technology, artificial intelligence is constantly infiltrating all aspects of production and life. However, with the in-depth development and application of artificial intelligence, the security challenges it faces have become more and more prominent. In the real world, attacks against intelligent systems such as the Internet of Things, smart homes, and driverless cars are constantly appearing, and incidents of artificial intelligence being used in cyber-attacks and cybercrimes frequently occur. This article aims to discuss artificial intelligence security issues and propose some countermeasures.
Ho, Tsung-Yu, Chen, Wei-An, Huang, Chiung-Ying.
2020.
The Burden of Artificial Intelligence on Internal Security Detection. 2020 IEEE 17th International Conference on Smart Communities: Improving Quality of Life Using ICT, IoT and AI (HONET). :148—150.
Our research team have devoted to extract internal malicious behavior by monitoring the network traffic for many years. We applied the deep learning approach to recognize the malicious patterns within network, but this methodology may lead to more works to examine the results from AI models production. Hence, this paper addressed the scenario to consider the burden of AI, and proposed an idea for long-term reliable detection in the future work.
Shu, Fei, Chen, Shuting, Li, Feng, Zhang, JianYe, Chen, Jia.
2020.
Research and implementation of network attack and defense countermeasure technology based on artificial intelligence technology. 2020 IEEE 5th Information Technology and Mechatronics Engineering Conference (ITOEC). :475—478.
Using artificial intelligence technology to help network security has become a major trend. At present, major countries in the world have successively invested R & D force in the attack and defense of automatic network based on artificial intelligence. The U.S. Navy, the U.S. air force, and the DOD strategic capabilities office have invested heavily in the development of artificial intelligence network defense systems. DARPA launched the network security challenge (CGC) to promote the development of automatic attack system based on artificial intelligence. In the 2016 Defcon final, mayhem (the champion of CGC in 2014), an automatic attack team, participated in the competition with 14 human teams and once defeated two human teams, indicating that the automatic attack method generated by artificial intelligence system can scan system defects and find loopholes faster and more effectively than human beings. Japan's defense ministry also announced recently that in order to strengthen the ability to respond to network attacks, it will introduce artificial intelligence technology into the information communication network defense system of Japan's self defense force. It can be predicted that the deepening application of artificial intelligence in the field of network attack and defense may bring about revolutionary changes and increase the imbalance of the strategic strength of cyberspace in various countries. Therefore, it is necessary to systematically investigate the current situation of network attack and defense based on artificial intelligence at home and abroad, comprehensively analyze the development trend of relevant technologies at home and abroad, deeply analyze the development outline and specification of artificial intelligence attack and defense around the world, and refine the application status and future prospects of artificial intelligence attack and defense, so as to promote the development of artificial intelligence attack and Defense Technology in China and protect the core interests of cyberspace, of great significance
Wu, Xiaohe, Calderon, Juan, Obeng, Morrison.
2021.
Attribution Based Approach for Adversarial Example Generation. SoutheastCon 2021. :1–6.
Neural networks with deep architectures have been used to construct state-of-the-art classifiers that can match human level accuracy in areas such as image classification. However, many of these classifiers can be fooled by examples slightly modified from their original forms. In this work, we propose a novel approach for generating adversarial examples that makes use of only attribution information of the features and perturbs only features that are highly influential to the output of the classifier. We call this approach Attribution Based Adversarial Generation (ABAG). To demonstrate the effectiveness of this approach, three somewhat arbitrary algorithms are proposed and examined. In the first algorithm all non-zero attributions are utilized and associated features perturbed; in the second algorithm only the top-n most positive and top-n most negative attributions are used and corresponding features perturbed; and in the third algorithm the level of perturbation is increased in an iterative manner until an adversarial example is discovered. All of the three algorithms are implemented and experiments are performed on the well-known MNIST dataset. Experiment results show that adversarial examples can be generated very efficiently, and thus prove the validity and efficacy of ABAG - utilizing attributions for the generation of adversarial examples. Furthermore, as shown by examples, ABAG can be adapted to provides a systematic searching approach to generate adversarial examples by perturbing a minimum amount of features.
Peck, Sarah Marie, Khan, Mohammad Maifi Hasan, Fahim, Md Abdullah Al, Coman, Emil N, Jensen, Theodore, Albayram, Yusuf.
2020.
Who Would Bob Blame? Factors in Blame Attribution in Cyberattacks Among the Non-Adopting Population in the Context of 2FA 2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC). :778–789.
This study focuses on identifying the factors contributing to a sense of personal responsibility that could improve understanding of insecure cybersecurity behavior and guide research toward more effective messaging targeting non-adopting populations. Towards that, we ran a 2(account type) x2(usage scenario) x2(message type) between-group study with 237 United States adult participants on Amazon MTurk, and investigated how the non-adopting population allocates blame, and under what circumstances they blame the end user among the parties who hold responsibility: the software companies holding data, the attackers exposing data, and others. We find users primarily hold service providers accountable for breaches but they feel the same companies should not enforce stronger security policies on users. Results indicate that people do hold end users accountable for their behavior in the event of a breach, especially when the users' behavior affects others. Implications of our findings in risk communication is discussed in the paper.
Song, Jie, Chen, Yixin, Ye, Jingwen, Wang, Xinchao, Shen, Chengchao, Mao, Feng, Song, Mingli.
2020.
DEPARA: Deep Attribution Graph for Deep Knowledge Transferability. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). :3921–3929.
Exploring the intrinsic interconnections between the knowledge encoded in PRe-trained Deep Neural Networks (PR-DNNs) of heterogeneous tasks sheds light on their mutual transferability, and consequently enables knowledge transfer from one task to another so as to reduce the training effort of the latter. In this paper, we propose the DEeP Attribution gRAph (DEPARA) to investigate the transferability of knowledge learned from PR-DNNs. In DEPARA, nodes correspond to the inputs and are represented by their vectorized attribution maps with regards to the outputs of the PR-DNN. Edges denote the relatedness between inputs and are measured by the similarity of their features extracted from the PR-DNN. The knowledge transferability of two PR-DNNs is measured by the similarity of their corresponding DEPARAs. We apply DEPARA to two important yet under-studied problems in transfer learning: pre-trained model selection and layer selection. Extensive experiments are conducted to demonstrate the effectiveness and superiority of the proposed method in solving both these problems. Code, data and models reproducing the results in this paper are available at https://github.com/zju-vipa/DEPARA.
Kumar, Sachin, Gupta, Garima, Prasad, Ranjitha, Chatterjee, Arnab, Vig, Lovekesh, Shroff, Gautam.
2020.
CAMTA: Causal Attention Model for Multi-touch Attribution. 2020 International Conference on Data Mining Workshops (ICDMW). :79–86.
Advertising channels have evolved from conventional print media, billboards and radio-advertising to online digital advertising (ad), where the users are exposed to a sequence of ad campaigns via social networks, display ads, search etc. While advertisers revisit the design of ad campaigns to concurrently serve the requirements emerging out of new ad channels, it is also critical for advertisers to estimate the contribution from touch-points (view, clicks, converts) on different channels, based on the sequence of customer actions. This process of contribution measurement is often referred to as multi-touch attribution (MTA). In this work, we propose CAMTA, a novel deep recurrent neural network architecture which is a causal attribution mechanism for user-personalised MTA in the context of observational data. CAMTA minimizes the selection bias in channel assignment across time-steps and touchpoints. Furthermore, it utilizes the users' pre-conversion actions in a principled way in order to predict per-channel attribution. To quantitatively benchmark the proposed MTA model, we employ the real-world Criteo dataset and demonstrate the superior performance of CAMTA with respect to prediction accuracy as compared to several baselines. In addition, we provide results for budget allocation and user-behaviour modeling on the predicted channel attribution.
Niu, Yingjiao, Lei, Lingguang, Wang, Yuewu, Chang, Jiang, Jia, Shijie, Kou, Chunjing.
2020.
SASAK: Shrinking the Attack Surface for Android Kernel with Stricter “seccomp” Restrictions. 2020 16th International Conference on Mobility, Sensing and Networking (MSN). :387–394.
The increasing vulnerabilities in Android kernel make it an attractive target to the attackers. Most kernel-targeted attacks are initiated through system calls. For security purpose, Google has introduced a Linux kernel security mechanism named “seccomp” since Android O to constrain the system calls accessible to the Android apps. Unfortunately, existing Android seccomp mechanism provides a fairly coarse-grained restriction by enforcing a unified seccomp policy containing more than 250 system calls for Android apps, which greatly reduces the effectiveness of seccomp. Also, it lacks an approach to profile the unnecessary system calls for a given Android app. In this paper we present a two-level control scheme named SASAK, which can shrink the attack surface of Android kernel by strictly constraining the system calls available to the Android apps with seccomp mechanism. First, instead of leveraging a unified seccomp policy for all Android apps, SASAK introduces an architecture- dedicated system call constraining by enforcing two separate and refined seccomp policies for the 32-bit Android apps and 64-bit Android apps, respectively. Second, we provide a tool to profile the necessary system calls for a given Android app and enforce an app-dedicated seccomp policy to further reduce the allowed system calls for the apps selected by the users. The app-dedicated control could dynamically change the seccomp policy for an app according to its actual needs. We implement a prototype of SASAK and the experiment results show that the architecture-dedicated constraining reduces 39.6% system calls for the 64-bit apps and 42.5% system calls for the 32-bit apps. 33% of the removed system calls for the 64-bit apps are vulnerable, and the number for the 32-bit apps is 18.8%. The app-dedicated restriction reduces about 66.9% and 62.5% system calls on average for the 64-bit apps and 32-bit apps, respectively. In addition, SASAK introduces negligible performance overhead.
Bradbury, Matthew, Maple, Carsten, Yuan, Hu, Atmaca, Ugur Ilker, Cannizzaro, Sara.
2020.
Identifying Attack Surfaces in the Evolving Space Industry Using Reference Architectures. 2020 IEEE Aerospace Conference. :1–20.
The space environment is currently undergoing a substantial change and many new entrants to the market are deploying devices, satellites and systems in space; this evolution has been termed as NewSpace. The change is complicated by technological developments such as deploying machine learning based autonomous space systems and the Internet of Space Things (IoST). In the IoST, space systems will rely on satellite-to-x communication and interactions with wider aspects of the ground segment to a greater degree than existing systems. Such developments will inevitably lead to a change in the cyber security threat landscape of space systems. Inevitably, there will be a greater number of attack vectors for adversaries to exploit, and previously infeasible threats can be realised, and thus require mitigation. In this paper, we present a reference architecture (RA) that can be used to abstractly model in situ applications of this new space landscape. The RA specifies high-level system components and their interactions. By instantiating the RA for two scenarios we demonstrate how to analyse the attack surface using attack trees.