Biblio
In this paper we propose a methodology and a prototype tool to evaluate web application security mechanisms. The methodology is based on the idea that injecting realistic vulnerabilities in a web application and attacking them automatically can be used to support the assessment of existing security mechanisms and tools in custom setup scenarios. To provide true to life results, the proposed vulnerability and attack injection methodology relies on the study of a large number of vulnerabilities in real web applications. In addition to the generic methodology, the paper describes the implementation of the Vulnerability & Attack Injector Tool (VAIT) that allows the automation of the entire process. We used this tool to run a set of experiments that demonstrate the feasibility and the effectiveness of the proposed methodology. The experiments include the evaluation of coverage and false positives of an intrusion detection system for SQL Injection attacks and the assessment of the effectiveness of two top commercial web application vulnerability scanners. Results show that the injection of vulnerabilities and attacks is indeed an effective way to evaluate security mechanisms and to point out not only their weaknesses but also ways for their improvement.
Most web applications have critical bugs (faults) affecting their security, which makes them vulnerable to attacks by hackers and organized crime. To prevent these security problems from occurring it is of utmost importance to understand the typical software faults. This paper contributes to this body of knowledge by presenting a field study on two of the most widely spread and critical web application vulnerabilities: SQL Injection and XSS. It analyzes the source code of security patches of widely used web applications written in weak and strong typed languages. Results show that only a small subset of software fault types, affecting a restricted collection of statements, is related to security. To understand how these vulnerabilities are really exploited by hackers, this paper also presents an analysis of the source code of the scripts used to attack them. The outcomes of this study can be used to train software developers and code inspectors in the detection of such faults and are also the foundation for the research of realistic vulnerability and attack injectors that can be used to assess security mechanisms, such as intrusion detection systems, vulnerability scanners, and static code analyzers.
Malicious applications can be introduced to attack users and services so as to gain financial rewards, individuals' sensitive information, company and government intellectual property, and to gain remote control of systems. However, traditional methods of malicious code detection, such as signature detection, behavior detection, virtual machine detection, and heuristic detection, have various weaknesses which make them unreliable. This paper presents the existing technologies of malicious code detection and a malicious code detection model is proposed based on behavior association. The behavior points of malicious code are first extracted through API monitoring technology and integrated into the behavior; then a relation between behaviors is established according to data dependence. Next, a behavior association model is built up and a discrimination method is put forth using pushdown automation. Finally, the exact malicious code is taken as a sample to carry out an experiment on the behavior's capture, association, and discrimination, thus proving that the theoretical model is viable.
This paper presents a credibility model to assess trust of Web services. The model relies on consumers' ratings whose accuracy can be questioned due to different biases. A category of consumers known as strict are usually excluded from the process of reaching a majority consensus. We demonstrated that this exclusion should not be. The proposed model reduces the gap between these consumers' ratings and the current majority rating. Fuzzy clustering is used to compute consumers' credibility. To validate this model a set of experiments are carried out.
Threats to modern ICT systems are rapidly changing these days. Organizations are not mainly concerned about virus infestation, but increasingly need to deal with targeted attacks. This kind of attacks are specifically designed to stay below the radar of standard ICT security systems. As a consequence, vendors have begun to ship self-learning intrusion detection systems with sophisticated heuristic detection engines. While these approaches are promising to relax the serious security situation, one of the main challenges is the proper evaluation of such systems under realistic conditions during development and before roll-out. Especially the wide variety of configuration settings makes it hard to find the optimal setup for a specific infrastructure. However, extensive testing in a live environment is not only cumbersome but usually also impacts daily business. In this paper, we therefore introduce an approach of an evaluation setup that consists of virtual components, which imitate real systems and human user interactions as close as possible to produce system events, network flows and logging data of complex ICT service environments. This data is a key prerequisite for the evaluation of modern intrusion detection and prevention systems. With these generated data sets, a system's detection performance can be accurately rated and tuned for very specific settings.
Face-to-face negotiations always benefit if the interacting individuals trust each other. But trust is also important in online interactions, even for humans interacting with a computational agent. In this article, the authors describe a behavioral experiment to determine whether, by volunteering information that it need not disclose, a software agent in a multi-issue negotiation can alleviate mistrust in human counterparts who differ in their propensities to mistrust others. Results indicated that when cynical, mistrusting humans negotiated with an agent that proactively communicated its issue priority and invited reciprocation, there were significantly more agreements and better utilities than when the agent didn't volunteer such information. Furthermore, when the agent volunteered its issue priority, the outcomes for mistrusting individuals were as good as those for trusting individuals, for whom the volunteering of issue priority conferred no advantage. These findings provide insights for designing more effective, socially intelligent agents in online negotiation settings.
The notion of trust is considered to be the cornerstone on patient-psychiatrist relationship. Thus, a trustfully background is fundamental requirement for provision of effective Ubiquitous Healthcare (UH) service. In this paper, the issue of Trust Evaluation of UH Providers when register UH environment is addressed. For that purpose a novel trust evaluation method is proposed, based on cloud theory, exploiting User Profile attributes. This theory mimics human thinking, regarding trust evaluation and captures fuzziness and randomness of this uncertain reasoning. Two case studies are investigated through simulation in MATLAB software, in order to verify the effectiveness of this novel method.
Phishing continues to remain a lucrative market for cyber criminals, mostly because of the vulnerable human element. Through emails and spoofed-websites, phishers exploit almost any opportunity using major events, considerable financial awards, fake warnings and the trusted reputation of established organizations, as a basis to gain their victims' trust. For many years, humans have often been referred to as the `weakest link' towards protecting information. To gain their victims' trust, phishers continue to use sophisticated looking emails and spoofed websites to trick them, and rely on their victims' lack of knowledge, lax security behavior and organizations' inadequate security measures towards protecting itself and their clients. As such, phishing security controls and vulnerabilities can arguably be classified into three main elements namely human factors (H), organizational aspects (O) and technological controls (T). All three of these elements have the common feature of human involvement and as such, security gaps are inevitable. Each element also functions as both security control and security vulnerability. A holistic framework towards combatting phishing is required whereby the human feature in all three of these elements is enhanced by means of a security education, training and awareness programme. This paper discusses the educational factors required to form part of a holistic framework, addressing the HOT elements as well as the relationships between these elements towards combatting phishing. The development of this framework uses the principles of design science to ensure that it is developed with rigor. Furthermore, this paper reports on the verification of the framework.
Mobile social networks (MSNs) facilitate connections between mobile users and allow them to find other potential users who have similar interests through mobile devices, communicate with them, and benefit from their information. As MSNs are distributed public virtual social spaces, the available information may not be trustworthy to all. Therefore, mobile users are often at risk since they may not have any prior knowledge about others who are socially connected. To address this problem, trust inference plays a critical role for establishing social links between mobile users in MSNs. Taking into account the nonsemantical representation of trust between users of the existing trust models in social networks, this paper proposes a new fuzzy inference mechanism, namely MobiFuzzyTrust, for inferring trust semantically from one mobile user to another that may not be directly connected in the trust graph of MSNs. First, a mobile context including an intersection of prestige of users, location, time, and social context is constructed. Second, a mobile context aware trust model is devised to evaluate the trust value between two mobile users efficiently. Finally, the fuzzy linguistic technique is used to express the trust between two mobile users and enhance the human's understanding of trust. Real-world mobile dataset is adopted to evaluate the performance of the MobiFuzzyTrust inference mechanism. The experimental results demonstrate that MobiFuzzyTrust can efficiently infer trust with a high precision.
This work proposes a novel approach to infer and characterize Internet-scale DNS amplification DDoS attacks by leveraging the darknet space. Complementary to the pioneer work on inferring Distributed Denial of Service (DDoS) using darknet, this work shows that we can extract DDoS activities without relying on backscattered analysis. The aim of this work is to extract cyber security intelligence related to DNS Amplification DDoS activities such as detection period, attack duration, intensity, packet size, rate and geo- location in addition to various network-layer and flow-based insights. To achieve this task, the proposed approach exploits certain DDoS parameters to detect the attacks. We empirically evaluate the proposed approach using 720 GB of real darknet data collected from a /13 address space during a recent three months period. Our analysis reveals that the approach was successful in inferring significant DNS amplification DDoS activities including the recent prominent attack that targeted one of the largest anti-spam organizations. Moreover, the analysis disclosed the mechanism of such DNS amplification DDoS attacks. Further, the results uncover high-speed and stealthy attempts that were never previously documented. The case study of the largest DDoS attack in history lead to a better understanding of the nature and scale of this threat and can generate inferences that could contribute in detecting, preventing, assessing, mitigating and even attributing of DNS amplification DDoS activities.
Distributed Denial of Service (DDoS) attacks are one of the challenging network security problems to address. The existing defense mechanisms against DDoS attacks usually filter the attack traffic at the victim side. The problem is exacerbated when there are spoofed IP addresses in the attack packets. In this case, even if the attacking traffic can be filtered by the victim, the attacker may reach the goal of blocking the access to the victim by consuming the computing resources or by consuming a big portion of the bandwidth to the victim. This paper proposes a Trace back-based Defense against DDoS Flooding Attacks (TDFA) approach to counter this problem. TDFA consists of three main components: Detection, Trace back, and Traffic Control. In this approach, the goal is to place the packet filtering as close to the attack source as possible. In doing so, the traffic control component at the victim side aims to set up a limit on the packet forwarding rate to the victim. This mechanism effectively reduces the rate of forwarding the attack packets and therefore improves the throughput of the legitimate traffic. Our results based on real world data sets show that TDFA is effective to reduce the attack traffic and to defend the quality of service for the legitimate traffic.
The main focus of this work is the estimation of a complex valued signal assumed to have a sparse representation in an uncountable dictionary of signals. The dictionary elements are parameterized by a real-valued vector and the available observations are corrupted with an additive noise. By applying a linearization technique, the original model is recast as a constrained sparse perturbed model. The problem of the computation of the involved multiple parameters is addressed from a nonconvex optimization viewpoint. A cost function is defined including an arbitrary Lipschitz differentiable data fidelity term accounting for the noise statistics, and an ℓ0-like penalty. A proximal algorithm is then employed to solve the resulting nonconvex and nonsmooth minimization problem. Experimental results illustrate the good practical performance of the proposed approach when applied to 2D spectrum analysis.
The vast majority of today's critical infrastructure is supported by numerous feedback control loops and an attack on these control loops can have disastrous consequences. This is a major concern since modern control systems are becoming large and decentralized and thus more vulnerable to attacks. This paper is concerned with the estimation and control of linear systems when some of the sensors or actuators are corrupted by an attacker. We give a new simple characterization of the maximum number of attacks that can be detected and corrected as a function of the pair (A,C) of the system and we show in particular that it is impossible to accurately reconstruct the state of a system if more than half the sensors are attacked. In addition, we show how the design of a secure local control loop can improve the resilience of the system. When the number of attacks is smaller than a threshold, we propose an efficient algorithm inspired from techniques in compressed sensing to estimate the state of the plant despite attacks. We give a theoretical characterization of the performance of this algorithm and we show on numerical simulations that the method is promising and allows to reconstruct the state accurately despite attacks. Finally, we consider the problem of designing output-feedback controllers that stabilize the system despite sensor attacks. We show that a principle of separation between estimation and control holds and that the design of resilient output feedback controllers can be reduced to the design of resilient state estimators.
By exploiting the communication infrastructure among the sensors, actuators, and control systems, attackers may compromise the security of smart-grid systems, with techniques such as denial-of-service (DoS) attack, random attack, and data-injection attack. In this paper, we present a mathematical model of the system to study these pitfalls and propose a robust security framework for the smart grid. Our framework adopts the Kalman filter to estimate the variables of a wide range of state processes in the model. The estimates from the Kalman filter and the system readings are then fed into the χ2-detector or the proposed Euclidean detector. The χ2-detector is a proven effective exploratory method used with the Kalman filter for the measurement of the relationship between dependent variables and a series of predictor variables. The χ2-detector can detect system faults/attacks, such as DoS attack, short-term, and long-term random attacks. However, the studies show that the χ2-detector is unable to detect the statistically derived false data-injection attack. To overcome this limitation, we prove that the Euclidean detector can effectively detect such a sophisticated injection attack.
The security of Smart Grid, being one of the very important aspects of the Smart Grid system, is studied in this paper. We first discuss different pitfalls in the security of the Smart Grid system considering the communication infrastructure among the sensors, actuators, and control systems. Following that, we derive a mathematical model of the system and propose a robust security framework for power grid. To effectively estimate the variables of a wide range of state processes in the model, we adopt Kalman Filter in the framework. The Kalman Filter estimates and system readings are then fed into the χ2-square detectors and the proposed Euclidean detectors, which can detect various attacks and faults in the power system including False Data Injection Attacks. The χ2-detector is a proven-effective exploratory method used with Kalman Filter for the measurement of the relationship between dependent variables and a series of predictor variables. The χ2-detector can detect system faults/attacks such as replay and DoS attacks. However, the study shows that the χ2-detector detectors are unable to detect statistically derived False Data Injection Attacks while the Euclidean distance metrics can identify such sophisticated injection attacks.
Control system networks are increasingly being connected to enterprise level networks. These connections leave critical industrial controls systems vulnerable to cyber-attacks. Most of the effort in protecting these cyber-physical systems (CPS) from attacks has been in securing the networks using information security techniques. Effort has also been applied to increasing the protection and reliability of the control system against random hardware and software failures. However, the inability of information security techniques to protect against all intrusions means that the control system must be resilient to various signal attacks for which new analysis methods need to be developed. In this paper, sensor signal attacks are analyzed for observer-based controlled systems. The threat surface for sensor signal attacks is subdivided into denial of service, finite energy, and bounded attacks. In particular, the error signals between states of attack free systems and systems subject to these attacks are quantified. Optimal sensor and actuator signal attacks for the finite and infinite horizon linear quadratic (LQ) control in terms of maximizing the corresponding cost functions are computed. The closed-loop systems under optimal signal attacks are provided. Finally, an illustrative numerical example using a power generation network is provided together with distributed LQ controllers.
Growing traffic volumes and the increasing complexity of attacks pose a constant scaling challenge for network intrusion prevention systems (NIPS). In this respect, offloading NIPS processing to compute clusters offers an immediately deployable alternative to expensive hardware upgrades. In practice, however, NIPS offloading is challenging on three fronts in contrast to passive network security functions: (1) NIPS offloading can impact other traffic engineering objectives; (2) NIPS offloading impacts user perceived latency; and (3) NIPS actively change traffic volumes by dropping unwanted traffic. To address these challenges, we present the SNIPS system. We design a formal optimization framework that captures tradeoffs across scalability, network load, and latency. We provide a practical implementation using recent advances in software-defined networking without requiring modifications to NIPS hardware. Our evaluations on realistic topologies show that SNIPS can reduce the maximum load by up to 10× while only increasing the latency by 2%.
Captchas are designed to be easy for humans but hard for machines. However, most recent research has focused only on making them hard for machines. In this paper, we present what is to the best of our knowledge the first large scale evaluation of captchas from the human perspective, with the goal of assessing how much friction captchas present to the average user. For the purpose of this study we have asked workers from Amazon’s Mechanical Turk and an underground captchabreaking service to solve more than 318 000 captchas issued from the 21 most popular captcha schemes (13 images schemes and 8 audio scheme). Analysis of the resulting data reveals that captchas are often difficult for humans, with audio captchas being particularly problematic. We also find some demographic trends indicating, for example, that non-native speakers of English are slower in general and less accurate on English-centric captcha schemes. Evidence from a week’s worth of eBay captchas (14,000,000 samples) suggests that the solving accuracies found in our study are close to real-world values, and that improving audio captchas should become a priority, as nearly 1% of all captchas are delivered as audio rather than images. Finally our study also reveals that it is more effective for an attacker to use Mechanical Turk to solve captchas than an underground service.
We are currently moving from the Internet society to a mobile society where more and more access to information is done by previously dumb phones. For example, the number of mobile phones using a full blown OS has risen to nearly 200% from Q3/2009 to Q3/2010. As a result, mobile security is no longer immanent, but imperative. This survey paper provides a concise overview of mobile network security, attack vectors using the back end system and the web browser, but also the hardware layer and the user as attack enabler. We show differences and similarities between "normal" security and mobile security, and draw conclusions for further research opportunities in this area.
We present an architecture for the Security Behavior Observatory (SBO), a client-server infrastructure designed to collect a wide array of data on user and computer behavior from hundreds of participants over several years. The SBO infrastructure had to be carefully designed to fulfill several requirements. First, the SBO must scale with the desired length, breadth, and depth of data collection. Second, we must take extraordinary care to ensure the security of the collected data, which will inevitably include intimate participant behavioral data. Third, the SBO must serve our research interests, which will inevitably change as collected data is analyzed and interpreted. This short paper summarizes some of our design and implementation benefits and discusses a few hurdles and trade-offs to consider when designing such a data collection system.
The relationship between accountability and identity in online life presents many interesting questions. Here, we first systematically survey the various (directed) relationships among principals, system identities (nyms) used by principals, and actions carried out by principals using those nyms. We also map these relationships to corresponding accountability-related properties from the literature. Because punishment is fundamental to accountability, we then focus on the relationship between punishment and the strength of the connection between principals and nyms. To study this particular relationship, we formulate a utility-theoretic framework that distinguishes between principals and the identities they may use to commit violations. In doing so, we argue that the analogue applicable to our setting of the well known concept of quasilinear utility is insufficiently rich to capture important properties such as reputation. We propose more general utilities with linear transfer that do seem suitable for this model. In our use of this framework, we define notions of "open" and "closed" systems. This distinction captures the degree to which system participants are required to be bound to their system identities as a condition of participating in the system. This allows us to study the relationship between the strength of identity binding and the accountability properties of a system.