Biblio
Cryptographic misuse affects a sizeable portion of Android applications. However, there is only an empirical study that has been made about this problem. In this paper, we perform a systematic analysis on the cryptographic misuse, build the cryptographic misuse vulnerability model and implement a prototype tool Crypto Misuse Analyser (CMA). The CMA can perform static analysis on Android apps and select the branches that invoke the cryptographic API. Then it runs the app following the target branch and records the cryptographic API calls. At last, the CMA identifies the cryptographic API misuse vulnerabilities from the records based on the pre-defined model. We also analyze dozens of Android apps with the help of CMA and find that more than a half of apps are affected by such vulnerabilities.
Although there has been much research on the leakage of sensitive data in Android applications, most of the existing research focus on how to detect the malware or adware that are intentionally collecting user privacy. There are not much research on analyzing the vulnerabilities of apps that may cause the leakage of privacy. In this paper, we present a vulnerability analyzing method which combines taint analysis and cryptography misuse detection. The four steps of this method are decompile, taint analysis, API call record, cryptography misuse analysis, all of which steps except taint analysis can be executed by the existing tools. We develop a prototype tool PW Exam to analysis how the passwords are handled and if the app is vulnerable to password leakage. Our experiment shows that a third of apps are vulnerable to leak the users' passwords.
Physical-layer authentication techniques exploit the unique properties of the wireless medium to enhance traditional higher-level authentication procedures. We propose to reduce the higher-level authentication overhead by using a state-of-the-art multi-target tracking technique based on Gaussian processes. The proposed technique has the additional advantage that it is capable of automatically learning the dynamics of the trusted user's channel response and the time-frequency fingerprint of intruders. Numerical simulations show very low intrusion rates, and an experimental validation using a wireless test bed with programmable radios demonstrates the technique's effectiveness.
Over the past decade, we have witnessed a huge upsurge in social networking which continues to touch and transform our lives till present day. Social networks help us to communicate amongst our acquaintances and friends with whom we share similar interests on a common platform. Globally, there are more than 200 million visually impaired people. Visual impairment has many issues associated with it, but the one that stands out is the lack of accessibility to content for entertainment and socializing safely. This paper deals with the development of a keyboard less social networking website for visually impaired. The term keyboard less signifies minimum use of keyboard and allows the user to explore the contents of the website using assistive technologies like screen readers and speech to text (STT) conversion technologies which in turn provides a user friendly experience for the target audience. As soon as the user with minimal computer proficiency opens this website, with the help of screen reader, he/she identifies the username and password fields. The user speaks out his username and with the help of STT conversion (using Web Speech API), the username is entered. Then the control moves over to the password field and similarly, the password of the user is obtained and matched with the one saved in the website database. The concept of acoustic fingerprinting has been implemented for successfully validating the passwords of registered users and foiling intentions of malicious attackers. On successful match of the passwords, the user is able to enjoy the services of the website without any further hassle. Once the access obstacles associated to deal with social networking sites are successfully resolved and proper technologies are put to place, social networking sites can be a rewarding, fulfilling, and enjoyable experience for the visually impaired people.
This article presents results of the recognition process of acoustic fingerprints from a noise source using spectral characteristics of the signal. Principal Components Analysis (PCA) is applied to reduce the dimensionality of extracted features and then a classifier is implemented using the method of the k-nearest neighbors (KNN) to identify the pattern of the audio signal. This classifier is compared with an Artificial Neural Network (ANN) implementation. It is necessary to implement a filtering system to the acquired signals for 60Hz noise reduction generated by imperfections in the acquisition system. The methods described in this paper were used for vessel recognition.
Distributed mesh sensor networks provide cost-effective communications for deployment in various smart grid domains, such as home area networks (HAN), neighborhood area networks (NAN), and substation/plant-generation local area networks. This paper introduces a dynamically updating key distribution strategy to enhance mesh network security against cyber attack. The scheme has been applied to two security protocols known as simultaneous authentication of equals (SAE) and efficient mesh security association (EMSA). Since both protocols utilize 4-way handshaking, we propose a Merkle-tree based handshaking scheme, which is capable of improving the resiliency of the network in a situation where an intruder carries a denial of service attack. Finally, by developing a denial of service attack model, we can then evaluate the security of the proposed schemes against cyber attack, as well as network performance in terms of delay and overhead.
Wireless mesh networks (WMNs) are attracting more and more real time applications. This kind of applications is constrained in terms of Quality of Service (QoS). Existing works in this area are mostly designed for mobile ad hoc networks, which, unlike WMNs, are mainly sensitive to energy and mobility. However, WMNs have their specific characteristics (e.g. static routers and heavy traffic load), which require dedicated QoS protocols. This paper proposes a novel traffic regulation scheme for multimedia support in WMNs. The proposed scheme aims to regulate the traffic sending rate according to the network state, based on the buffer evolution at mesh routers and on the priority of each traffic type. By monitoring the buffer evolution at mesh routers, our scheme is able to predict possible congestion, or QoS violation, early enough before their occurrence; each flow is then regulated according to its priority and to its QoS requirements. The idea behind the proposed scheme is to maintain lightly loaded buffers in order to minimize the queuing delays, as well as, to avoid congestion. Moreover, the regulation process is made smoothly in order to ensure the continuity of real time and interactive services. We use the interval type-2 fuzzy logic system (IT2 FLS), known by its adequacy to uncertain environments, to make suitable regulation decisions. The performance of our scheme is proved through extensive simulations in different network and traffic load scales.
This paper presents the relative merits of IR and microwave sensor technology and their combination with wireless camera for the development of a wall mounted wireless intrusion detection system and explain the phases by which the intrusion information are collected and sent to the central control station using wireless mesh network for analysis and processing the collected data. These days every protected zone is facing numerous security threats like trespassing or damaging of important equipments and a lot more. Unwanted intrusion has turned out to be a growing problem which has paved the way for a newer technology which detects intrusion accurately. Almost all organizations have their own conventional arrangement of protecting their zones by constructing high wall, wire fencing, power fencing or employing guard for manual observation. In case of large areas, manually observing the perimeter is not a viable option. To solve this type of problem we have developed a wall-mounted wireless fencing system. In this project I took the responsibility of studying how the different units could be collaborated and how the data collected from them could be further processed with the help of software, which was developed by me. The Intrusion detection system constitutes an important field of application for IR and microwave based wireless sensor network. A state of the art wall-mounted wireless intrusion detection system will detect intrusion automatically, through multi-level detection mechanism (IR, microwave, active RFID & camera) and will generate multi-level alert (buzzer, images, segment illumination, SMS, E-Mail) to notify security officers, owners and also illuminate the particular segment where the intrusion has happened. This system will enable the authority to quickly handle the emergency through identification of the area of incident at once and to take action quickly. IR based perimeter protection is a proven technology. However IR-based intrusion detection system is not a full-proof solution since (1) IR may fail in foggy or dusty weather condition & hence it may generate false alarm. Therefore we amalgamate this technology with Microwave based intrusion detection which can work satisfactorily in foggy weather. Also another significant arena of our proposed system is the Camera-based intrusion detection. Some industries require this feature to capture the snap-shots of the affected location instantly as the intrusion happens. The Intrusion information data are transmitted wirelessly to the control station via multi hop routing (using active RFID or IEEE 802.15.4 protocol). The Control station will receive intrusion information at real time and analyze the data with the help of the Intrusion software. It then sends SMS to the predefined numbers of the respective authority through GSM modem attached with the control station engine.
The concept of Smart grid technology sets greater demands for reliability and resilience on communications infrastructure. Wireless communication is a promising alternative for distribution level, Home Area Network (HAN), smart metering and even the backbone networks that connect smart grid applications to control centres. In this paper, the reliability and resilience of smart grid communication network is analysed using the IEEE 802.11 communication technology in both infrastructure single hop and mesh multiple-hop topologies for smart meters in a Building Area Network (BAN). Performance of end to end delay and Round Trip Time (RTT) of an infrastructure mode smart meter network for Demand Response (DR) function is presented. Hybrid deployment of these network topologies is also suggested to provide resilience and redundancy in the network during network failure or when security of the network is circumvented. This recommendation can also be deployed in other areas of the grid where wireless technologies are used. DR communication from consumer premises is used to show the performance of an infrastructure mode smart metering network.
This paper presents a human model-based feature extraction method for a video surveillance retrieval system. The proposed method extracts, from a normalized scene, object features such as height, speed, and representative color using a simple human model based on multiple-ellipse. Experimental results show that the proposed system can effectively track moving routes of people such as a missing child, an absconder, and a suspect after events.
To reduce human efforts in browsing long surveillance videos, synopsis videos are proposed. Traditional synopsis video generation applying optimization on video tubes is very time consuming and infeasible for real-time online generation. This dilemma significantly reduces the feasibility of synopsis video generation in practical situations. To solve this problem, the synopsis video generation problem is formulated as a maximum a posteriori probability (MAP) estimation problem in this paper, where the positions and appearing frames of video objects are chronologically rearranged in real time without the need to know their complete trajectories. Moreover, a synopsis table is employed with MAP estimation to decide the temporal locations of the incoming foreground objects in the synopsis video without needing an optimization procedure. As a result, the computational complexity of the proposed video synopsis generation method can be significantly reduced. Furthermore, as it does not require prescreening the entire video, this approach can be applied on online streaming videos.
H.264/advanced video coding surveillance video encoders use the Skip mode specified by the standard to reduce bandwidth. They also use multiple frames as reference for motion-compensated prediction. In this paper, we propose two techniques to reduce the bandwidth and computational cost of static camera surveillance video encoders without affecting detection and recognition performance. A spatial sampler is proposed to sample pixels that are segmented using a Gaussian mixture model. Modified weight updates are derived for the parameters of the mixture model to reduce floating point computations. A storage pattern of the parameters in memory is also modified to improve cache performance. Skip selection is performed using the segmentation results of the sampled pixels. The second contribution is a low computational cost algorithm to choose the reference frames. The proposed reference frame selection algorithm reduces the cost of coding uncovered background regions. We also study the number of reference frames required to achieve good coding efficiency. Distortion over foreground pixels is measured to quantify the performance of the proposed techniques. Experimental results show bit rate savings of up to 94.5% over methods proposed in literature on video surveillance data sets. The proposed techniques also provide up to 74.5% reduction in compression complexity without increasing the distortion over the foreground regions in the video sequence.
Cellular data networks are proliferating to address the need for ubiquitous connectivity. To cope with the increasing number of subscribers and with the spatiotemporal variations of the wireless signals, current cellular networks use opportunistic schedulers, such as the Proportional Fairness scheduler (PF), to maximize network throughput while maintaining fairness among users. Such scheduling decisions are based on channel quality metrics and Automatic Repeat reQuest (ARQ) feedback reports provided by the User's Equipment (UE). Implicit in current networks is the a priori trust on every UE's feedback. Malicious UEs can, thus, exploit this trust to disrupt service by intelligently faking their reports. This work proposes a trustworthy version of the PF scheduler (called TPF) to mitigate the effects of such Denial-of-Service (DoS) attacks. In brief, based on the channel quality reported by the UE, we assign a probability to possible ARQ feedbacks. We then use the probability associated with the actual ARQ report to assess the UE's reporting trustworthiness. We adapt the scheduling mechanism to give higher priority to more trusted users. Our evaluations show that TPF 1) does not induce any performance degradation under benign settings, and 2) it completely mitigates the effects of the activity of malicious UEs. In particular, while colluding attackers can obtain up to 77 percent of the time slots with the most sophisticated attack, TPF is able to contain this percentage to as low as 6 percent.
The performance of indirect trust computation models (based on recommendations) can be easily compromised due to the subjective and social-based prejudice of the provided recommendations. Eradicating the influence of such recommendation remains an important and challenging issue in indirect trust computation models. An effective model for indirect trust computation is proposed which is capable of identifying dishonest recommendations. Dishonest recommendations are identified by using deviation based detecting technique. The concept of measuring the credibility of recommendation (rather than credibility of recommender) using fuzzy inference engine is also proposed to determine the influence of each honest recommendation. The proposed model has been compared with other existing evolutionary recommendation models in this field, and it is shown that the model is more accurate in measuring the trustworthiness of unknown entity.
Physical-layer authentication techniques exploit the unique properties of the wireless medium to enhance traditional higher-level authentication procedures. We propose to reduce the higher-level authentication overhead by using a state-of-the-art multi-target tracking technique based on Gaussian processes. The proposed technique has the additional advantage that it is capable of automatically learning the dynamics of the trusted user's channel response and the time-frequency fingerprint of intruders. Numerical simulations show very low intrusion rates, and an experimental validation using a wireless test bed with programmable radios demonstrates the technique's effectiveness.
As a new computing mode, cloud computing can provide users with virtualized and scalable web services, which faced with serious security challenges, however. Access control is one of the most important measures to ensure the security of cloud computing. But applying traditional access control model into the Cloud directly could not solve the uncertainty and vulnerability caused by the open conditions of cloud computing. In cloud computing environment, only when the security and reliability of both interaction parties are ensured, data security can be effectively guaranteed during interactions between users and the Cloud. Therefore, building a mutual trust relationship between users and cloud platform is the key to implement new kinds of access control method in cloud computing environment. Combining with Trust Management(TM), a mutual trust based access control (MTBAC) model is proposed in this paper. MTBAC model take both user's behavior trust and cloud services node's credibility into consideration. Trust relationships between users and cloud service nodes are established by mutual trust mechanism. Security problems of access control are solved by implementing MTBAC model into cloud computing environment. Simulation experiments show that MTBAC model can guarantee the interaction between users and cloud service nodes.
The electric network frequency (ENF) criterion is a recently developed technique for audio timestamp identification, which involves the matching between extracted ENF signal and reference data. For nearly a decade, conventional matching criterion has been based on the minimum mean squared error (MMSE) or maximum correlation coefficient. However, the corresponding performance is highly limited by low signal-to-noise ratio, short recording durations, frequency resolution problems, and so on. This paper presents a threshold-based dynamic matching algorithm (DMA), which is capable of autocorrecting the noise affected frequency estimates. The threshold is chosen according to the frequency resolution determined by the short-time Fourier transform (STFT) window size. A penalty coefficient is introduced to monitor the autocorrection process and finally determine the estimated timestamp. It is then shown that the DMA generalizes the conventional MMSE method. By considering the mainlobe width in the STFT caused by limited frequency resolution, the DMA achieves improved identification accuracy and robustness against higher levels of noise and the offset problem. Synthetic performance analysis and practical experimental results are provided to illustrate the advantages of the DMA.
While many theoretical and simulation works have highlighted the potential gains of cognitive radio, several technical issues still need to be evaluated from an experimental point of view. Deploying complex heterogeneous system scenarios is tedious, time consuming and hardly reproducible. To address this problem, we have developed a new experimental facility, called CorteXlab, that allows complex multi-node cognitive radio scenarios to be easily deployed and tested by anyone in the world. Our objective is not to design new software defined radio (SDR) nodes, but rather to provide a comprehensive access to a large set of high performance SDR nodes. The CorteXlab facility offers a 167 m2 electromagnetically (EM) shielded room and integrates a set of 24 universal software radio peripherals (USRPs) from National Instruments, 18 PicoSDR nodes from Nutaq and 42 IoT-Lab wireless sensor nodes from Hikob. CorteXlab is built upon the foundations of the SensLAB testbed and is based the free and open-source toolkit GNU Radio. Automation in scenario deployment, experiment start, stop and results collection is performed by an experiment controller, called Minus. CorteXlab is in its final stages of development and is already capable of running test scenarios. In this contribution, we show that CorteXlab is able to easily cope with the usual issues faced by other testbeds providing a reproducible experiment environment for CR experimentation.
The advanced encryption standard (AES) has been sufficiently studied to confirm that its decryption is computationally impossible. However, its vulnerability against fault analysis attacks has been pointed out in recent years. To verify the vulnerability of electronic devices in the future, into which cryptographic circuits have been incorporated, fault Analysis attacks must be thoroughly studied. The present study proposes a new fault analysis attack method which utilizes the tendency of an operation error due to a glitch. The present study also verifies the validity of the proposed method by performing evaluation experiments using FPGA.
Providers of critical infrastructure services strive to maintain the high availability of their SCADA systems. This paper reports on our experience designing, architecting, and evaluating the first survivable SCADA system-one that is able to ensure correct behavior with minimal performance degradation even during cyber attacks that compromise part of the system. We describe the challenges we faced when integrating modern intrusion-tolerant protocols with a conventional SCADA architecture and present the techniques we developed to overcome these challenges. The results illustrate that our survivable SCADA system not only functions correctly in the face of a cyber attack, but that it also processes in excess of 20 000 messages per second with a latency of less than 30 ms, making it suitable for even large-scale deployments managing thousands of remote terminal units.
A physical unclonable function (PUF) is an integrated circuit (IC) that serves as a hardware security primitive due to its complexity and the unpredictability between its outputs and the applied inputs. PUFs have received a great deal of research interest and significant commercial activity. Public PUFs (PPUFs) address the crucial PUF limitation of being a secret-key technology. To some extent, the first generation of PPUFs are similar to SIMulation Possible, but Laborious (SIMPL) systems and one-time hardware pads, and employ the time gap between direct execution and simulation. The second PPUF generation employs both process variation and device aging which results in matched devices that are excessively difficult to replicate. The third generation leaves the analog domain and employs reconfigurability and device aging to produce digital PPUFs. We survey representative PPUF architectures, related public protocols and trusted information flows, and related testing issues. We conclude by identifying the most important, challenging, and open PPUF-related problems.
Online social networks are attracting billions of nowadays, both on a global scale as well as in social enterprise networks. Using distributed hash tables and peer-to-peer technology allows online social networks to be operated securely and efficiently only by using the resources of the user devices, thus alleviating censorship or data misuse by a single network operator. In this paper, we address the challenges that arise in implementing reliably and conveniently to use distributed data structures, such as lists or sets, in such a distributed hash-table-based online social network. We present a secure, distributed list data structure that manages the list entries in several buckets in the distributed hash table. The list entries are authenticated, integrity is maintained and access control for single users and also groups is integrated. The approach for secure distributed lists is also applied for prefix trees and sets, and implemented and evaluated in a peer-to-peer framework for social networks. Evaluation shows that the distributed data structure is convenient and efficient to use and that the requirements on security hold.
The trusted network connection is a hot spot in trusted computing field and the trust measurement and access control technology are used to deal with network security threats in trusted network. But the trusted network connection lacks fine-grained states and real-time measurement support for the client and the authentication mechanism is difficult to apply in the trusted network connection, it is easy to cause the loss of identity privacy. In order to solve the above-described problems, this paper presents a trust measurement scheme suitable for clients in the trusted network, the scheme integrates the following attributes such as authentication mechanism, state measurement, and real-time state measurement and so on, and based on the authentication mechanism and the initial state measurement, the scheme uses the real-time state measurement as the core method to complete the trust measurement for the client. This scheme presented in this paper supports both static and dynamic measurements. Overall, the characteristics of this scheme such as fine granularity, dynamic, real-time state measurement make it possible to make more fine-grained security policy and therefore it overcomes inadequacies existing in the current trusted network connection.
Probing attacks are serious threats on integrated circuits. Security products often include a protective layer called shield that acts like a digital fence. In this article, we demonstrate a new shield structure that is cryptographically secure. This shield is based on the newly proposed SIMON lightweight block cipher and independent mesh lines to ensure the security against probing attacks of the hardware located behind the shield. Such structure can be proven secure against state-of-the-art invasive attacks. For the first time in the open literature, we describe a chip designed with a digital shield, and give an extensive report of its cost, in terms of power, metal layer(s) to sacrifice and of logic (including the logic to connect it to the CPU). Also, we explain how “Through Silicon Vias” (TSV) technology can be used for the protection against both frontside and backside probing.
Radio Frequency IDentification (RFID) is a technique for speedy and proficient identification system, it has been around for more than 50 years and was initially developed for improving warfare machinery. RFID technology bridges two technologies in the area of Information and Communication Technologies (ICT), namely Product Code (PC) technology and Wireless technology. This broad-based rapidly expanding technology impacts business, environment and society. The operating principle of an RFID system is as follows. The reader starts a communication process by radiating an electromagnetic wave. This wave will be intercepted by the antenna of the RFID tag, placed on the item to be identified. An induced current will be created at the tag and will activate the integrated circuit, enabling it to send back a wave to the reader. The reader redirects information to the host where it will be processed. RFID is used for wide range of applications in almost every field (Health, education, industry, security, management ...). In this review paper, we will focus on agricultural and environmental applications.