Biblio
Filters: First Letter Of Last Name is G [Clear All Filters]
Android Malware Risk Evaluation Using Fuzzy Logic. 2022 Seventh International Conference on Parallel, Distributed and Grid Computing (PDGC). :341—345.
.
2022. The static and dynamic malware analysis are used by industrialists and academics to understand malware capabilities and threat level. The antimalware industries calculate malware threat levels using different techniques which involve human involvement and a large number of resources and analysts. As malware complexity, velocity and volume increase, it becomes impossible to allocate so many resources. Due to this reason, it is projected that the number of malware apps will continue to rise, and that more devices will be targeted in order to commit various sorts of cybercrime. It is therefore necessary to develop techniques that can calculate the damage or threat posed by malware automatically as soon as it is identified. In this way, early warnings about zero-day (unknown) malware can assist in allocating resources for carrying out a close analysis of it as soon as it is identified. In this paper, a fuzzy modelling approach is described for calculating the potential risk of malicious programs through static malware analysis.
PDF Malware Analysis. 2022 7th International Conference on Computing, Communication and Security (ICCCS). :1—4.
.
2022. This document addresses the issue of the actual security level of PDF documents. Two types of detection approaches are utilized to detect dangerous elements within malware: static analysis and dynamic analysis. Analyzing malware binaries to identify dangerous strings, as well as reverse-engineering is included in static analysis for t1he malware to disassemble it. On the other hand, dynamic analysis monitors malware activities by running them in a safe environment, such as a virtual machine. Each method has its own set of strengths and weaknesses, and it is usually best to employ both methods while analyzing malware. Malware detection could be simplified without sacrificing accuracy by reducing the number of malicious traits. This may allow the researcher to devote more time to analysis. Our worry is that there is no obvious need to identify malware with numerous functionalities when it isn't necessary. We will solve this problem by developing a system that will identify if the given file is infected with malware or not.
Mal-Bert-GCN: Malware Detection by Combining Bert and GCN. 2022 IEEE International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :175—183.
.
2022. With the dramatic increase in malicious software, the sophistication and innovation of malware have increased over the years. In particular, the dynamic analysis based on the deep neural network has shown high accuracy in malware detection. However, most of the existing methods only employ the raw API sequence feature, which cannot accurately reflect the actual behavior of malicious programs in detail. The relationship between API calls is critical for detecting suspicious behavior. Therefore, this paper proposes a malware detection method based on the graph neural network. We first connect the API sequences executed by different processes to build a directed process graph. Then, we apply Bert to encode the API sequences of each process into node embedding, which facilitates the semantic execution information inside the processes. Finally, we employ GCN to mine the deep semantic information based on the directed process graph and node embedding. In addition to presenting the design, we have implemented and evaluated our method on 10,000 malware and 10,000 benign software datasets. The results show that the precision and recall of our detection model reach 97.84% and 97.83%, verifying the effectiveness of our proposed method.
Design of an Automated Blockchain-Enabled Vehicle Data Management System. 2022 5th International Conference on Signal Processing and Information Security (ICSPIS). :22–25.
.
2022. The Internet of Vehicles (IoV) has a tremendous prospect for numerous vehicular applications. IoV enables vehicles to transmit data to improve roadway safety and efficiency. Data security is essential for increasing the security and privacy of vehicle and roadway infrastructures in IoV systems. Several researchers proposed numerous solutions to address security and privacy issues in IoV systems. However, these issues are not proper solutions that lack data authentication and verification protocols. In this paper, a blockchain-enabled automated data management system for vehicles has been proposed and demonstrated. This work enables automated data verification and authentication using smart contracts. Certified organizations can only access vehicle data uploaded by the vehicle user to the Interplanetary File System (IPFS) server through that vehicle user’s consent. The proposed system increases the security of vehicles and data. Vehicle privacy is also maintained here by increasing data privacy.
ISSN: 2831-3844
Blockchain-based trust evaluation mechanism for Internet of Vehicles. 2022 IEEE Smartworld, Ubiquitous Intelligence & Computing, Scalable Computing & Communications, Digital Twin, Privacy Computing, Metaverse, Autonomous & Trusted Vehicles (SmartWorld/UIC/ScalCom/DigitalTwin/PriComp/Meta). :2011–2018.
.
2022. In the traditional Internet of Vehicles, communication data is easily tampered with and easily leaked. In order to improve the trust evaluation mechanism of the Internet of Vehicles and establish a trust relationship between vehicles, a blockchain-based Internet of Vehicles trust evaluation (BBTE) scheme is proposed. First, the scheme uses the roadside unit RSU to calculate the trust value of vehicle nodes and maintain the generation, verification and storage of blocks, so as to realize distributed data storage and ensure that data cannot be tampered with. Secondly, an efficient trust evaluation method is designed. The method integrates four trust decision factors: initial trust, historical experience trust, recommendation trust and RSU observation trust to obtain the overall trust value of vehicle nodes. In addition, in the process of constructing the recommendation trust method, the recommendation trust is divided into three categories according to the interaction between the recommended vehicle node and the communicator, use CRITIC to obtain the optimal weights of three recommended trusts, and use CRITIC to obtain the optimal weights of four trust decision-making factors to obtain the final trust value. Finally, the NS3 simulation platform is used to verify the security and accuracy of the trust evaluation method, and to improve the identification accuracy and detection rate of malicious vehicle nodes. The experimental analysis shows that the scheme can effectively deal with the gray hole attack, slander attack and collusion attack of other vehicle nodes, improve the security of vehicle node communication interaction, and provide technical support for the basic application of Internet of Vehicles security.
Intelligent System and Human-Computer Interaction for Personal Data Cyber Security in Medicaid Enterprises. 2022 International Conference on Electrical, Computer and Energy Technologies (ICECET). :1–4.
.
2022. Intelligent Systems for Personal Data Cyber Security is a critical component of the Personal Information Management of Medicaid Enterprises. Intelligent Systems for Personal Data Cyber Security combines components of Cyber Security Systems with Human-Computer Interaction. It also uses the technology and principles applied to the Internet of Things. The use of software-hardware concepts and solutions presented in this report is, in the authors’ opinion, some step in the working-out of the Intelligent Systems for Personal Data Cyber Security in Medicaid Enterprises. These concepts may also be useful for developers of these types of systems.
The Block Chain Technology to protect Data Access using Intelligent Contracts Mechanism Security Framework for 5G Networks. 2022 5th International Conference on Contemporary Computing and Informatics (IC3I). :108–112.
.
2022. The introduction of the study primarily emphasises the significance of utilising block chain technologies with the possibility of privacy and security benefits from the 5G Network. One may state that the study’s primary focus is on all the advantages of adopting block chain technology to safeguard everyone’s access to crucial data by utilizing intelligent contracts to enhance the 5G network security model on information security operations.Our literature evaluation for the study focuses primarily on the advantages advantages of utilizing block chain technology advance data security and privacy, as well as their development and growth. The whole study paper has covered both the benefits and drawbacks of employing the block chain technology. The literature study part of this research article has, on the contrary hand, also studied several approaches and tactics for using the blockchain technology facilities. To fully understand the circumstances in this specific case, a poll was undertaken. It was possible for the researchers to get some real-world data in this specific situation by conducting a survey with 51 randomly selected participants.
Research on Intellectual Property Protection of Artificial Intelligence Creation in China Based on SVM Kernel Methods. 2022 International Conference on Blockchain Technology and Information Security (ICBCTIS). :230–236.
.
2022. Artificial intelligence creation comes into fashion and has brought unprecedented challenges to intellectual property law. In order to study the viewpoints of AI creation copyright ownership from professionals in different institutions, taking the papers of AI creation on CNKI from 2016 to 2021, we applied orthogonal design and analysis of variance method to construct the dataset. A kernel-SVM classifier with different kernel methods in addition to some shallow machine learning classifiers are selected in analyzing and predicting the copyright ownership of AI creation. Support vector machine (svm) is widely used in statistics and the performance of SVM method is closely related to the choice of the kernel function. SVM with RBF kernel surpasses the other seven kernel-SVM classifiers and five shallow classifier, although the accuracy provided by all of them was not satisfactory. Various performance metrics such as accuracy, F1-score are used to evaluate the performance of KSVM and other classifiers. The purpose of this study is to explore the overall viewpoints of AI creation copyright ownership, investigate the influence of different features on the final copyright ownership and predict the most likely viewpoint in the future. And it will encourage investors, researchers and promote intellectual property protection in China.
Blockchain-based Intellectual Property Management Using Smart Contracts. 2022 3rd International Conference for Emerging Technology (INCET). :1–5.
.
2022. Smart contracts are an attractive aspect of blockchain technology. A smart contract is a piece of executable code that runs on top of the blockchain and is used to facilitate, execute, and enforce agreements between untrustworthy parties without the need for a third party. This paper offers a review of the literature on smart contract applications in intellectual property management. The goal is to look at technology advancements and smart contract deployment in this area. The theoretical foundation of many papers published in recent years is used as a source of theoretical and implementation research for this purpose. According to the literature review we conducted, smart contracts function automatically, control, or document legally significant events and activities in line with the contract agreement's terms. This is a relatively new technology that is projected to deliver solutions for trust, security, and transparency across a variety of areas. An exploratory strategy was used to perform this literature review.
Research on Defending Code Reuse Attack Based on Binary Rewriting. 2022 IEEE 8th International Conference on Computer and Communications (ICCC). :1682—1686.
.
2022. At present, code reuse attacks, such as Return Oriented Programming (ROP), execute attacks through the code of the application itself, bypassing the traditional defense mechanism and seriously threatening the security of computer software. The existing two mainstream defense mechanisms, Address Space Layout Randomization (ASLR), are vulnerable to information disclosure attacks, and Control-Flow Integrity (CFI) will bring high overhead to programs. At the same time, due to the widespread use of software of unknown origin, there is no source code provided or available, so it is not always possible to secure the source code. In this paper, we propose FRCFI, an effective method based on binary rewriting to prevent code reuse attacks. FRCFI first disrupts the program's memory space layout through function shuffling and NOP insertion, then verifies the execution of the control-flow branch instruction ret and indirect call/jmp instructions to ensure that the target address is not modified by attackers. Experiment show shows that FRCFI can effectively defend against code reuse attacks. After randomization, the survival rate of gadgets is only 1.7%, and FRCFI adds on average 6.1% runtime overhead on SPEC CPU2006 benchmark programs.
Game-theoretic and Learning-aided Physical Layer Security for Multiple Intelligent Eavesdroppers. 2022 IEEE Globecom Workshops (GC Wkshps). :233—238.
.
2022. Artificial Intelligence (AI) technology is developing rapidly, permeating every aspect of human life. Although the integration between AI and communication contributes to the flourishing development of wireless communication, it induces severer security problems. As a supplement to the upper-layer cryptography protocol, physical layer security has become an intriguing technology to ensure the security of wireless communication systems. However, most of the current physical layer security research does not consider the intelligence and mobility of collusive eavesdroppers. In this paper, we consider a MIMO system model with a friendly intelligent jammer against multiple collusive intelligent eavesdroppers, and zero-sum game is exploited to formulate the confrontation of them. The Nash equilibrium is derived by convex optimization and alternative optimization in the free-space scenario of a single user system. We propose a zero-sum game deep learning algorithm (ZGDL) for general situations to solve non-convex game problems. In terms of the effectiveness, simulations are conducted to confirm that the proposed algorithm can obtain the Nash equilibrium.
Implementation of Physical Layer Security into 5G NR Systems and E2E Latency Assessment. GLOBECOM 2022 - 2022 IEEE Global Communications Conference. :4044—4050.
.
2022. This paper assesses the impact on the performance that information-theoretic physical layer security (IT-PLS) introduces when integrated into a 5G New Radio (NR) system. For this, we implement a wiretap code for IT-PLS based on a modular coding scheme that uses a universal-hash function in its security layer. The main advantage of this approach lies in its flexible integration into the lower layers of the 5G NR protocol stack without affecting the communication's reliability. Specifically, we use IT-PLS to secure the transmission of downlink control information by integrating an extra pre-coding security layer as part of the physical downlink control channel (PDCCH) procedures, thus not requiring any change of the 3GPP 38 series standard. We conduct experiments using a real-time open-source 5G NR standalone implementation and use software-defined radios for over-the-air transmissions in a controlled laboratory environment. The overhead added by IT-PLS is determined in terms of the latency introduced into the system, which is measured at the physical layer for an end-to-end (E2E) connection between the gNB and the user equipment.
Attacking Masked Cryptographic Implementations: Information-Theoretic Bounds. 2022 IEEE International Symposium on Information Theory (ISIT). :654—659.
.
2022. Measuring the information leakage is critical for evaluating the practical security of cryptographic devices against side-channel analysis. Information-theoretic measures can be used (along with Fano’s inequality) to derive upper bounds on the success rate of any possible attack in terms of the number of side-channel measurements. Equivalently, this gives lower bounds on the number of queries for a given success probability of attack. In this paper, we consider cryptographic implementations protected by (first-order) masking schemes, and derive several information-theoretic bounds on the efficiency of any (second-order) attack. The obtained bounds are generic in that they do not depend on a specific attack but only on the leakage and masking models, through the mutual information between side-channel measurements and the secret key. Numerical evaluations confirm that our bounds reflect the practical performance of optimal maximum likelihood attacks.
On the Security Properties of Combinatorial All-or-nothing Transforms. 2022 IEEE International Symposium on Information Theory (ISIT). :1447—1452.
.
2022. All-or-nothing transforms (AONT) were proposed by Rivest as a message preprocessing technique for encrypting data to protect against brute-force attacks, and have many applications in cryptography and information security. Later the unconditionally secure AONT and their combinatorial characterization were introduced by Stinson. Informally, a combinatorial AONT is an array with the unbiased requirements and its security properties in general depend on the prior probability distribution on the inputs s-tuples. Recently, it was shown by Esfahani and Stinson that a combinatorial AONT has perfect security provided that all the inputs s-tuples are equiprobable, and has weak security provided that all the inputs s-tuples are with non-zero probability. This paper aims to explore on the gap between perfect security and weak security for combinatorial (t, s, v)-AONTs. Concretely, we consider the typical scenario that all the s inputs take values independently (but not necessarily identically) and quantify the amount of information H(\textbackslashmathcalX\textbackslashmid \textbackslashmathcalY) about any t inputs \textbackslashmathcalX that is not revealed by any s−t outputs \textbackslashmathcalY. In particular, we establish the general lower and upper bounds on H(\textbackslashmathcalX\textbackslashmid \textbackslashmathcalY) for combinatorial AONTs using information-theoretic techniques, and also show that the derived bounds can be attained in certain cases.
An Analysis of Insider Attack Detection Using Machine Learning Algorithms. 2022 IEEE 2nd International Conference on Mobile Networks and Wireless Communications (ICMNWC). :1—7.
.
2022. Among the greatest obstacles in cybersecurity is insider threat, which is a well-known massive issue. This anomaly shows that the vulnerability calls for specialized detection techniques, and resources that can help with the accurate and quick detection of an insider who is harmful. Numerous studies on identifying insider threats and related topics were also conducted to tackle this problem are proposed. Various researches sought to improve the conceptual perception of insider risks. Furthermore, there are numerous drawbacks, including a dearth of actual cases, unfairness in drawing decisions, a lack of self-optimization in learning, which would be a huge concern and is still vague, and the absence of an investigation that focuses on the conceptual, technological, and numerical facets concerning insider threats and identifying insider threats from a wide range of perspectives. The intention of the paper is to afford a thorough exploration of the categories, levels, and methodologies of modern insiders based on machine learning techniques. Further, the approach and evaluation metrics for predictive models based on machine learning are discussed. The paper concludes by outlining the difficulties encountered and offering some suggestions for efficient threat identification using machine learning.
Networked Control System Information Security Platform. 2022 IEEE Asia-Pacific Conference on Image Processing, Electronics and Computers (IPEC). :738–742.
.
2022. With the development of industrial informatization, information security in the power production industry is becoming more and more important. In the power production industry, as the critical information egress of the industrial control system, the information security of the Networked Control System is particularly important. This paper proposes a construction method for an information security platform of Networked Control System, which is used for research, testing and training of Networked Control System information security.
Research on industrial Robot system security based on Industrial Internet Platform. 2022 7th IEEE International Conference on Data Science in Cyberspace (DSC). :214–218.
.
2022. The industrial Internet platform has been applied to various fields of industrial production, effectively improving the data flow of all elements in the production process, improving production efficiency, reducing production costs, and ensuring the market competitiveness of enterprises. The premise of the effective application of the industrial Internet platform is the interconnection of industrial equipment. In the industrial Internet platform, industrial robot is a very common industrial control device. These industrial robots are connected to the control network of the industrial Internet platform, which will have obvious advantages in production efficiency and equipment maintenance, but at the same time will cause more serious network security problems. The industrial robot system based on the industrial Internet platform not only increases the possibility of industrial robots being attacked, but also aggravates the loss and harm caused by industrial robots being attacked. At the same time, this paper illustrates the effects and scenarios of industrial robot attacks based on industrial interconnection platforms from four different scenarios of industrial robots being attacked. Availability and integrity are related to the security of the environment.
Application of Biometric System to Enhance the Security in Virtual World. 2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE). :719–723.
.
2022. Virtual worlds was becoming increasingly popular in a variety of fields, including education, business, space exploration, and video games. Establishing the security of virtual worlds was becoming more critical as they become more widely used. Virtual users were identified using a behavioral biometric system. Improve the system's ability to identify objects by fusing scores from multiple sources. Identification was based on a review of user interactions in virtual environments and a comparison with previous recordings in the database. For behavioral biometric systems like the one described, it appears that score-level biometric fusion was a promising tool for improving system performance. As virtual worlds become more immersive, more people will want to participate in them, and more people will want to be able to interact with each other. Each region of the Meta-verse was given a glimpse of the current state of affairs and the trends to come. As hardware performance and institutional and public interest continue to improve, the Meta-verse's development is hampered by limitations like computational method limits and a lack of realized collaboration between virtual world stakeholders and developers alike. A major goal of the proposed research was to verify the accuracy of the biometric system to enhance the security in virtual world. In this study, the precision of the proposed work was compared to that of previous work.
Research on Intelligent Network Operation Management System Based on Anomaly Detection and Time Series Forecasting Algorithms. 2022 IEEE Conference on Telecommunications, Optics and Computer Science (TOCS). :338—341.
.
2022. The research try to implements an intelligent network operation management system for enterprise networks. First, based on Flask-state software architecture, the system adapt to Phytium CPU and Galaxy Kylin operating system successfully. Second, using the Isolation Forest algorithm, the system implements the anomaly detection of host data such as CPU usage. Third, using the Holt-winters seasonal prediction model, the system can predict time series data such as network I/O. The results show that the system can realizes anomaly detection and time series data prediction more precisely and intelligently.
Model-free Adaptive Sliding Mode Control for Interconnected Power Systems under DoS Attacks. 2022 IEEE 11th Data Driven Control and Learning Systems Conference (DDCLS). :487—492.
.
2022. In this paper, a new model-free adaptive sliding mode load frequency control (LFC) scheme is designed for inter-connected power systems, where modeling is difficult and suffers from load change disturbances and denial of service (DoS) attacks. The proposed algorithm only uses real-time I/O data of the power system to achieve a high control performance. Firstly, the dynamic linearization strategy is used to build a data-based model of the power system, and intermittent DoS attacks are modeled by limiting their duration and frequency. Secondly, the model-free adaptive sliding mode control (MFASMC) scheme is designed based on optimization theory and sliding mode reaching law, and its stability is analyzed. Finally, the three-area interconnected power system was selected to test the presented MFASMC scheme. Simulation data shows the effectiveness of the LFC algorithm in this paper.
Deverlay: Container Snapshots For Virtual Machines. 2022 22nd IEEE International Symposium on Cluster, Cloud and Internet Computing (CCGrid). :11—20.
.
2022. The Cloud Native paradigm has quickly emerged as a new trend in Web Services architectures. Applications are now developed as a network of microservices and functions that can be quickly re-deployed anywhere, decoupled from their state. In this scenario, workloads are usually packaged as container images that can be quickly provisioned anywhere in a provider web service. To enforce security, traditional Docker container runtime mechanisms are now being enhanced by stronger isolation techniques such as lightweight hardware level virtualization. Such sandboxing inserts a strong boundary - the guest space - and therefore security containers do not share filesystem semantics with the host Operating System. However, the existing container storage drivers are designed and optimized to run directly on the host. In this paper we bridge the gap between traditional containers and virtualized containers. We present Deverlay, a container storage driver that prepares a block-based container root filesystem view, targeting lightweight Virtual Machines and keeping host native execution compatibility. We show that, in contrast to other block-based drivers, Deverlay can boot 80 micro VM containers in less than 4s by efficiently sharing host cache buffers among containers and reducing I/O disk access by 97.51 %.
DefendR - An Advanced Security Model Using Mini Filter in Unix Multi-Operating System. 2022 8th International Conference on Smart Structures and Systems (ICSSS). :1—6.
.
2022. DefendR is a Security operation used to block the access of the user to edit or overwrite the contents in our personal file that is stored in our system. This approach of applying a certain filter for the sensitive or sensitive data that are applicable exclusively in read-only mode. This is an improvisation of security for the personal data that restricts undo or redo related operations in the shared file. We use a mini-filter driver tool. Specifically, IRP (Incident Response Plan)-based I/O operations, as well as fast FSFilter callback activities, may additionally all be filtered with a mini-filter driver. A mini-filter can register a preoperation callback procedure, a postoperative Each of the I/O operations it filters is filtered by a callback procedure. By registering all necessary callback filtering methods in a filter manager, a mini-filter driver interfaces to the file system indirectly. When a mini-filter is loaded, the latter is a Windows file system filter driver that is active and connects to the file system stack.
Deep Learning-based Multi-PLC Anomaly Detection in Industrial Control Systems. GLOBECOM 2022 - 2022 IEEE Global Communications Conference. :4878—4884.
.
2022. Industrial control systems (ICSs) have become more complex due to their increasing connectivity, heterogeneity and, autonomy. As a result, cyber-threats against such systems have been significantly increased as well. Since a compromised industrial system can easily lead to hazardous safety and security consequences, it is crucial to develop security countermeasures to protect coexisting IT systems and industrial physical processes being involved in modern ICSs. Accordingly, in this study, we propose a deep learning-based semantic anomaly detection framework to model the complex behavior of ICSs. In contrast to the related work assuming only simpler security threats targeting individual controllers in an ICS, we address multi-PLC attacks that are harder to detect as requiring to observe the overall system state alongside single-PLC attacks. Using industrial simulation and emulation frameworks, we create a realistic setup representing both the production and networking aspects of industrial systems and conduct some potential attacks. Our experimental results indicate that our model can detect single-PLC attacks with 95% accuracy and multi-PLC attacks with 80% accuracy and nearly 1% false positive rate.
Blockchain-based Device Identity Management with Consensus Authentication for IoT Devices. 2022 IEEE 19th Annual Consumer Communications & Networking Conference (CCNC). :433—436.
.
2022. To decrease the IoT attack surface and provide protection against security threats such as introduction of fake IoT nodes and identity theft, IoT requires scalable device identity and authentication management. This work proposes a blockchain-based identity management approach with consensus authentication as a scalable solution for IoT device authentication management. The proposed approach relies on having a blockchain secure tamper proof ledger and a novel lightweight consensus-based identity authentication. The results show that the proposed decentralised authentication system is scalable as we increase number of nodes.
Odd-Even Hash Algorithm: A Improvement of Cuckoo Hash Algorithm. 2021 Ninth International Conference on Advanced Cloud and Big Data (CBD). :1—6.
.
2022. Hash-based data structures and algorithms are currently flourishing on the Internet. It is an effective way to store large amounts of information, especially for applications related to measurement, monitoring and security. At present, there are many hash table algorithms such as: Cuckoo Hash, Peacock Hash, Double Hash, Link Hash and D-left Hash algorithm. However, there are still some problems in these hash table algorithms, such as excessive memory space, long insertion and query operations, and insertion failures caused by infinite loops that require rehashing. This paper improves the kick-out mechanism of the Cuckoo Hash algorithm, and proposes a new hash table structure- Odd-Even Hash (OE Hash) algorithm. The experimental results show that OE Hash algorithm is more efficient than the existing Link Hash algorithm, Linear Hash algorithm, Cuckoo Hash algorithm, etc. OE Hash algorithm takes into account the performance of both query time and insertion time while occupying the least space, and there is no insertion failure that leads to rehashing, which is suitable for massive data storage.