Visible to the public Biblio

Found 3516 results

Filters: First Letter Of Last Name is M  [Clear All Filters]
2022-06-08
Ma, Yingjue, Ni, Hui-jun, Li, Yanping.  2021.  Information Security Practice of Intelligent Knowledge Ecological Communities with Cloud Computing. 2021 IEEE International Conference on Consumer Electronics and Computer Engineering (ICCECE). :242–245.
With powerful ability to organize, retrieve and share information, cloud computing technology has effectively improved the development of intelligent learning ecological Communities. The study finds development create a security atmosphere with all homomorphic encryption technology, virtualization technology to prevent the leakage and loss of information data. The result provided a helpful guideline to build a security environment for intelligent ecological communities.
Septianto, Daniel, Lukas, Mahawan, Bagus.  2021.  USB Flash Drives Forensic Analysis to Detect Crown Jewel Data Breach in PT. XYZ (Coffee Shop Retail - Case Study). 2021 9th International Conference on Information and Communication Technology (ICoICT). :286–290.
USB flash drives are used widely to store or transfer data among the employees in the company. There was greater concern about leaks of information especially company crown jewel or intellectual property data inside the USB flash drives because of theft, loss, negligence or fraud. This study is a real case in XYZ company which aims to find remaining the company’s crown jewel or intellectual property data inside the USB flash drives that belong to the employees. The research result showed that sensitive information (such as user credentials, product recipes and customer credit card data) could be recovered from the employees’ USB flash drives. It could obtain a high-risk impact on the company as reputational damage and sabotage product from the competitor. This result will help many companies to increase security awareness in protecting their crown jewel by having proper access control and to enrich knowledge regarding digital forensic for investigation in the company or enterprise.
2022-06-07
Graham, Martin, Kukla, Robert, Mandrychenko, Oleksii, Hart, Darren, Kennedy, Jessie.  2021.  Developing Visualisations to Enhance an Insider Threat Product: A Case Study. 2021 IEEE Symposium on Visualization for Cyber Security (VizSec). :47–57.
This paper describes the process of developing data visualisations to enhance a commercial software platform for combating insider threat, whose existing UI, while perfectly functional, was limited in its ability to allow analysts to easily spot the patterns and outliers that visualisation naturally reveals. We describe the design and development process, proceeding from initial tasks/requirements gathering, understanding the platform’s data formats, the rationale behind the visualisations’ design, and then refining the prototype through gathering feedback from representative domain experts who are also current users of the software. Through a number of example scenarios, we show that the visualisation can support the identified tasks and aid analysts in discovering and understanding potentially risky insider activity within a large user base.
Gayathri, R G, Sajjanhar, Atul, Xiang, Yong, Ma, Xingjun.  2021.  Anomaly Detection for Scenario-based Insider Activities using CGAN Augmented Data. 2021 IEEE 20th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :718–725.
Insider threats are the cyber attacks from the trusted entities within an organization. An insider attack is hard to detect as it may not leave a footprint and potentially cause huge damage to organizations. Anomaly detection is the most common approach for insider threat detection. Lack of real-world data and the skewed class distribution in the datasets makes insider threat analysis an understudied research area. In this paper, we propose a Conditional Generative Adversarial Network (CGAN) to enrich under-represented minority class samples to provide meaningful and diverse data for anomaly detection from the original malicious scenarios. Comprehensive experiments performed on benchmark dataset demonstrates the effectiveness of using CGAN augmented data, and the capability of multi-class anomaly detection for insider activity analysis. Moreover, the method is compared with other existing methods against different parameters and performance metrics.
Meng, Fanzhi, Lu, Peng, Li, Junhao, Hu, Teng, Yin, Mingyong, Lou, Fang.  2021.  GRU and Multi-autoencoder based Insider Threat Detection for Cyber Security. 2021 IEEE Sixth International Conference on Data Science in Cyberspace (DSC). :203–210.
The concealment and confusion nature of insider threat makes it a challenging task for security analysts to identify insider threat from log data. To detect insider threat, we propose a novel gated recurrent unit (GRU) and multi-autoencoder based insider threat detection method, which is an unsupervised anomaly detection method. It takes advantage of the extremely unbalanced characteristic of insider threat data and constructs a normal behavior autoencoder with low reconfiguration error through multi-level filter behavior learning, and identifies the behavior data with high reconfiguration error as abnormal behavior. In order to achieve the high efficiency of calculation and detection, GRU and multi-head attention are introduced into the autoencoder. Use dataset v6.2 of the CERT insider threat as validation data and threat detection recall as evaluation metric. The experimental results show that the effect of the proposed method is obviously better than that of Isolation Forest, LSTM autoencoder and multi-channel autoencoders based insider threat detection methods, and it's an effective insider threat detection technology.
2022-06-06
Madono, Koki, Nakano, Teppei, Kobayashi, Tetsunori, Ogawa, Tetsuji.  2020.  Efficient Human-In-The-Loop Object Detection using Bi-Directional Deep SORT and Annotation-Free Segment Identification. 2020 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC). :1226–1233.
The present study proposes a method for detecting objects with a high recall rate for human-supported video annotation. In recent years, automatic annotation techniques such as object detection and tracking have become more powerful; however, detection and tracking of occluded objects, small objects, and blurred objects are still difficult. In order to annotate such objects, manual annotation is inevitably required. For this reason, we envision a human-supported video annotation framework in which over-detected objects (i.e., false positives) are allowed to minimize oversight (i.e., false negatives) in automatic annotation and then the over-detected objects are removed manually. This study attempts to achieve human-in-the-loop object detection with an emphasis on suppressing the oversight for the former stage of processing in the aforementioned annotation framework: bi-directional deep SORT is proposed to reliably capture missed objects and annotation-free segment identification (AFSID) is proposed to identify video frames in which manual annotation is not required. These methods are reinforced each other, yielding an increase in the detection rate while reducing the burden of human intervention. Experimental comparisons using a pedestrian video dataset demonstrated that bi-directional deep SORT with AFSID was successful in capturing object candidates with a higher recall rate over the existing deep SORT while reducing the cost of manpower compared to manual annotation at regular intervals.
Jobst, Matthias, Liu, Chen, Partzsch, Johannes, Yan, Yexin, Kappel, David, Gonzalez, Hector A., Ji, Yue, Vogginger, Bernhard, Mayr, Christian.  2020.  Event-based Neural Network for ECG Classification with Delta Encoding and Early Stopping. 2020 6th International Conference on Event-Based Control, Communication, and Signal Processing (EBCCSP). :1–4.
We present a scalable architecture based on a trained filter bank for input pre-processing and a recurrent neural network (RNN) for the detection of atrial fibrillation in electrocardiogram (ECG) signals, with the focus on enabling a very efficient hardware implementation as application-specific integrated circuit (ASIC). Our already very efficient base architecture is further improved by replacing the RNN with a delta-encoded gated recurrent unit (GRU) and adding a confidence measure (CM) for terminating the computation as early as possible. With these optimizations, we demonstrate a reduction of the processing load of 58 % on an internal dataset while still achieving near state-of-the-art classification results on the Physionet ECG dataset with only 1202 parameters.
Matsushita, Haruka, Sato, Kaito, Sakura, Mamoru, Sawada, Kenji, Shin, Seiichi, Inoue, Masaki.  2020.  Rear-wheel steering control reflecting driver personality via Human-In-The-Loop System. 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC). :356–362.
One of the typical autonomous driving systems is a human-machine cooperative system that intervenes in the driver operation. The autonomous driving needs to make consideration of the driver individuality in addition to safety. This paper considers a human-machine cooperative system balancing safety with the driver individuality using the Human-In-The-Loop System (HITLS) for rear-wheel steering control. This paper assumes that it is safe for HITLS to follow the target side-slip angle and target angular velocity without conflicts between the controller and driver operations. We propose HITLS using the primal-dual algorithm and the internal model control (IMC) type I-PD controller. In HITLS, the signal expander delimits the human-selectable operating range and the controller cooperates stably the human operation and automated control in that range. The primal-dual algorithm realizes the driver and the signal expander. Our outcomes are the making of the rear-wheel steering system which converges to the target value while reflecting the driver individuality.
Uchida, Hikaru, Matsubara, Masaki, Wakabayashi, Kei, Morishima, Atsuyuki.  2020.  Human-in-the-loop Approach towards Dual Process AI Decisions. 2020 IEEE International Conference on Big Data (Big Data). :3096–3098.
How to develop AI systems that can explain how they made decisions is one of the important and hot topics today. Inspired by the dual-process theory in psychology, this paper proposes a human-in-the-loop approach to develop System-2 AI that makes an inference logically and outputs interpretable explanation. Our proposed method first asks crowd workers to raise understandable features of objects of multiple classes and collect training data from the Internet to generate classifiers for the features. Logical decision rules with the set of generated classifiers can explain why each object is of a particular class. In our preliminary experiment, we applied our method to an image classification of Asian national flags and examined the effectiveness and issues of our method. In our future studies, we plan to combine the System-2 AI with System-1 AI (e.g., neural networks) to efficiently output decisions.
Boddy, Aaron, Hurst, William, Mackay, Michael, El Rhalibi, Abdennour.  2019.  A Hybrid Density-Based Outlier Detection Model for Privacy in Electronic Patient Record system. 2019 5th International Conference on Information Management (ICIM). :92–96.
This research concerns the detection of unauthorised access within hospital networks through the real-time analysis of audit logs. Privacy is a primary concern amongst patients due to the rising adoption of Electronic Patient Record (EPR) systems. There is growing evidence to suggest that patients may withhold information from healthcare providers due to lack of Trust in the security of EPRs. Yet, patient record data must be available to healthcare providers at the point of care. Ensuring privacy and confidentiality of that data is challenging. Roles within healthcare organisations are dynamic and relying on access control is not sufficient. Through proactive monitoring of audit logs, unauthorised accesses can be detected and presented to an analyst for review. Advanced data analytics and visualisation techniques can be used to aid the analysis of big data within EPR audit logs to identify and highlight pertinent data points. Employing a human-in-the-loop model ensures that suspicious activity is appropriately investigated and the data analytics is continuously improving. This paper presents a system that employs a Human-in-the-Loop Machine Learning (HILML) algorithm, in addition to a density-based local outlier detection model. The system is able to detect 145 anomalous behaviours in an unlabelled dataset of 1,007,727 audit logs. This equates to 0.014% of the EPR accesses being labelled as anomalous in a specialist Liverpool (UK) hospital.
Hung, Benjamin W.K., Muramudalige, Shashika R., Jayasumana, Anura P., Klausen, Jytte, Libretti, Rosanne, Moloney, Evan, Renugopalakrishnan, Priyanka.  2019.  Recognizing Radicalization Indicators in Text Documents Using Human-in-the-Loop Information Extraction and NLP Techniques. 2019 IEEE International Symposium on Technologies for Homeland Security (HST). :1–7.
Among the operational shortfalls that hinder law enforcement from achieving greater success in preventing terrorist attacks is the difficulty in dynamically assessing individualized violent extremism risk at scale given the enormous amount of primarily text-based records in disparate databases. In this work, we undertake the critical task of employing natural language processing (NLP) techniques and supervised machine learning models to classify textual data in analyst and investigator notes and reports for radicalization behavioral indicators. This effort to generate structured knowledge will build towards an operational capability to assist analysts in rapidly mining law enforcement and intelligence databases for cues and risk indicators. In the near-term, this effort also enables more rapid coding of biographical radicalization profiles to augment a research database of violent extremists and their exhibited behavioral indicators.
Mirza, Mohammad Meraj, Karabiyik, Umit.  2021.  Enhancing IP Address Geocoding, Geolocating and Visualization for Digital Forensics. 2021 International Symposium on Networks, Computers and Communications (ISNCC). :1–7.
Internet Protocol (IP) address holds a probative value to the identification process in digital forensics. The decimal digit is a unique identifier that is beneficial in many investigations (i.e., network, email, memory). IP addresses can reveal important information regarding the device that the user uses during Internet activity. One of the things that IP addresses can essentially help digital forensics investigators in is the identification of the user machine and tracing evidence based on network artifacts. Unfortunately, it appears that some of the well-known digital forensic tools only provide functions to recover IP addresses from a given forensic image. Thus, there is still a gap in answering if IP addresses found in a smartphone can help reveal the user’s location and be used to aid investigators in identifying IP addresses that complement the user’s physical location. Furthermore, the lack of utilizing IP mapping and visualizing techniques has resulted in the omission of such digital evidence. This research aims to emphasize the importance of geolocation data in digital forensic investigations, propose an IP visualization technique considering several sources of evidence, and enhance the investigation process’s speed when its pertained to IP addresses using spatial analysis. Moreover, this research proposes a proof-of-concept (POC) standalone tool that can match critical IP addresses with approximate geolocations to fill the gap in this area.
Tiwari, Asheesh, Mehrotra, Vibhu, Goel, Shubh, Naman, Kumar, Maurya, Shashank, Agarwal, Ritik.  2021.  Developing Trends and Challenges of Digital Forensics. 2021 5th International Conference on Information Systems and Computer Networks (ISCON). :1–5.
Digital forensics is concerned with identifying, reporting and responding to security breaches. It is about how to acquire, analyze and report digital evidence and using the technical skills, discovering the traces of Cyber Crime. The field of digital forensics is in high demand due to the constant threats of data breaches and information hacks. Digital Forensics is utilized in the identification and elimination of crimes in any controversy where evidence is preserved in online space. This is the use of specialized techniques for retrieval, authentication and electronic data analysis. Computer forensics deals with the identification, preservation, analysis, documentation and presentation of digital evidence. The paper has analyzed the present-day trends that includes IoT forensics, cloud forensics, network forensics and social media forensics. Recent researches have shown a wide range of threats and cyber-attacks, which requires forensic investigators and forensics scientists to simplify the digital world. Hence, all our research gives a clear view of digital forensics which could be of a great help in forensic investigation. In this research paper we have discussed about the need and way to preserve the digital evidence, so that it is not compromised at any point in time and an unalter evidence can be presented before the court of law.
Dimitriadis, Athanasios, Lontzetidis, Efstratios, Mavridis, Ioannis.  2021.  Evaluation and Enhancement of the Actionability of Publicly Available Cyber Threat Information in Digital Forensics. 2021 IEEE International Conference on Cyber Security and Resilience (CSR). :318–323.

Cyber threat information can be utilized to investigate incidents by leveraging threat-related knowledge from prior incidents with digital forensic techniques and tools. However, the actionability of cyber threat information in digital forensics has not yet been evaluated. Such evaluation is important to ascertain that cyber threat information is as actionable as it can be and to reveal areas of improvement. In this study, a dataset of cyber threat information products was created from well-known cyber threat information sources and its actionability in digital forensics was evaluated. The evaluation results showed a high level of cyber threat information actionability that still needs enhancements in supporting some widely present types of attacks. To further enhance the provision of actionable cyber threat information, the development of the new TREVItoSTIX Autopsy module is presented. TREVItoSTIX allows the expression of the findings of an incident investigation in the structured threat information expression format in order to be easily shared and reused in future digital forensics investigations.

2022-05-24
Safitri, Cutifa, Nguyen, Quang Ngoc, Deo Lumoindong, Christoforus Williem, Ayu, Media Anugerah, Mantoro, Teddy.  2021.  Advanced Forwarding Strategy Towards Delay Tolerant Information-Centric Networking. 2021 IEEE 7th International Conference on Computing, Engineering and Design (ICCED). :1–5.
Information-Centric Networking (ICN) is among the promising architecture that can drive the need and versatility towards the future generation (xG) needs. In the future, support for network communication relies on the area of telemedicine, autonomous vehicles, and disaster recovery. In the disaster recovery case, there is a high possibility where the communication path is severed. Multicast communication and DTN-friendly route algorithm are becoming suitable options to send a packet message to get a faster response and to see any of the nodes available for service, this approach could give burden to the core network. Also, during disaster cases, many people would like to communicate, receive help, and find family members. Flooding the already disturbed/severed network will further reduce communication performance efficiency even further. Thus, this study takes into consideration prioritization factors to allow networks to process and delivering priority content. For this purpose, the proposed technique introduces the Routable Prefix Identifier (RP-ID) that takes into account the prioritization factor to enable optimization in Delay Tolerant ICN communication.
Fazea, Yousef, Mohammed, Fathey, Madi, Mohammed, Alkahtani, Ammar Ahmed.  2021.  Review on Network Function Virtualization in Information-Centric Networking. 2021 International Conference of Technology, Science and Administration (ICTSA). :1–6.
Network function virtualization (NFV / VNF) and information-centric networking (ICN) are two trending technologies that have attracted expert's attention. NFV is a technique in which network functions (NF) are decoupling from commodity hardware to run on to create virtual communication services. The virtualized class nodes can bring several advantages such as reduce Operating Expenses (OPEX) and Capital Expenses (CAPEX). On the other hand, ICN is a technique that breaks the host-centric paradigm and shifts the focus to “named information” or content-centric. ICN provides highly efficient content retrieval network architecture where popular contents are cached to minimize duplicate transmissions and allow mobile users to access popular contents from caches of network gateways. This paper investigates the implementation of NFV in ICN. Besides, reviewing and discussing the weaknesses and strengths of each architecture in a critical analysis manner of both network architectures. Eventually, highlighted the current issues and future challenges of both architectures.
Pellenz, Marcelo E., Lachowski, Rosana, Jamhour, Edgard, Brante, Glauber, Moritz, Guilherme Luiz, Souza, Richard Demo.  2021.  In-Network Data Aggregation for Information-Centric WSNs using Unsupervised Machine Learning Techniques. 2021 IEEE Symposium on Computers and Communications (ISCC). :1–7.
IoT applications are changing our daily lives. These innovative applications are supported by new communication technologies and protocols. Particularly, the information-centric network (ICN) paradigm is well suited for many IoT application scenarios that involve large-scale wireless sensor networks (WSNs). Even though the ICN approach can significantly reduce the network traffic by optimizing the process of information recovery from network nodes, it is also possible to apply data aggregation strategies. This paper proposes an unsupervised machine learning-based data aggregation strategy for multi-hop information-centric WSNs. The results show that the proposed algorithm can significantly reduce the ICN data traffic while having reduced information degradation.
Fazea, Yousef, Mohammed, Fathey.  2021.  Software Defined Networking based Information Centric Networking: An Overview of Approaches and Challenges. 2021 International Congress of Advanced Technology and Engineering (ICOTEN). :1–8.
ICN (Information-Centric Networking) is a traditional networking approach which focuses on Internet design, while SDN (Software Defined Networking) is known as a speedy and flexible networking approach. Integrating these two approaches can solve different kinds of traditional networking problems. On the other hand, it may expose new challenges. In this paper, we study how these two networking approaches are been combined to form SDN-based ICN architecture to improve network administration. Recent research is explored to identify the SDN-based ICN challenges, provide a critical analysis of the current integration approaches, and determine open issues for further research.
Aranha, Helder, Masi, Massimiliano, Pavleska, Tanja, Sellitto, Giovanni Paolo.  2021.  Securing the metrological chain in IoT environments: an architectural framework. 2021 IEEE International Workshop on Metrology for Industry 4.0 IoT (MetroInd4.0 IoT). :704–709.
The Internet of Things (IoT) paradigm, with its highly distributed and interconnected architecture, is gaining ground in Industry 4.0 and in critical infrastructures like the eHealth sector, the Smart Grid, Intelligent Power Plants and Smart Mobility. In these critical sectors, the preservation of metrological characteristics and their traceability is a strong legal requirement, just like cyber-security, since it offers the ground for liability. Any vulnerability in the system in which the metrological network is embedded can endanger human lives, the environment or entire economies. This paper presents a framework comprised of a methodology and some tools for the governance of the metrological chain. The proposed methodology combines the RAMI 4.0 model, which is a Reference Architecture used in the field of Industrial Internet of Things (IIoT), with the the Reference Model for Information Assurance & Security (RMIAS), a framework employed to guarantee information assurance and security, merging them with the well established paradigms to preserve calibration and referability of metrological instruments. Thus, metrological traceability and cyber-security are taken into account straight from design time, providing a conceptual space to achieve security by design and to support the maintenance of the metrological chain over the entire system lifecycle. The framework lends itself to be completely automatized with Model Checking to support automatic detection of non conformity and anomalies at run time.
Khan, Wazir Zada, Khurram Khan, Muhammad, Arshad, Qurat-ul-Ain, Malik, Hafiz, Almuhtadi, Jalal.  2021.  Digital Labels: Influencing Consumers Trust and Raising Cybersecurity Awareness for Adopting Autonomous Vehicles. 2021 IEEE International Conference on Consumer Electronics (ICCE). :1–4.
Autonomous vehicles (AVs) offer a wide range of promising benefits by reducing traffic accidents, environmental pollution, traffic congestion and land usage etc. However, to reap the intended benefits of AVs, it is inevitable that this technology should be trusted and accepted by the public. The consumer's substantial trust upon AVs will lead to its widespread adoption in the real-life. It is well understood that the preservation of strong security and privacy features influence a consumer's trust on a product in a positive manner. In this paper, we introduce a novel concept of digital labels for AVs to increase consumers awareness and trust regarding the security level of their vehicle. We present an architecture called Cybersecurity Box (CSBox) that leverages digital labels to display and inform consumers and passengers about cybersecurity status of the AV in use. The introduction of cybersecurity digital labels on the dashboard of AVs would attempt to increase the trust level of consumers and passengers on this promising technology.
2022-05-23
Hyodo, Yasuhide, Sugai, Chihiro, Suzuki, Junya, Takahashi, Masafumi, Koizumi, Masahiko, Tomura, Asako, Mitsufuji, Yuki, Komoriya, Yota.  2021.  Psychophysiological Effect of Immersive Spatial Audio Experience Enhanced Using Sound Field Synthesis. 2021 9th International Conference on Affective Computing and Intelligent Interaction (ACII). :1–8.
Recent advancements of spatial audio technologies to enhance human’s emotional and immersive experiences are gathering attention. Many studies are clarifying the neural mechanisms of acoustic spatial perception; however, they are limited to the evaluation of mechanisms using basic sound stimuli. Therefore, it remains challenging to evaluate the experience of actual music contents and to verify the effects of higher-order neurophysiological responses including a sense of immersive and realistic experience. To investigate the effects of spatial audio experience, we verified the psychophysiological responses of immersive spatial audio experience using sound field synthesis (SFS) technology. Specifically, we evaluated alpha power as the central nervous system activity, heart rate/heart rate variability and skin conductance as the autonomic nervous system activity during an acoustic experience of an actual music content by comparing stereo and SFS conditions. As a result, statistically significant differences (p \textbackslashtextless 0.05) were detected in the changes in alpha wave power, high frequency wave power of heart rate variability (HF), and skin conductance level (SCL) among the conditions. The results of the SFS condition showed enhanced the changes in alpha power in the frontal and parietal regions, suggesting enhancement of emotional experience. The results of the SFS condition also suggested that close objects are grouped and perceived on the basis of the spatial proximity of sounds in the presence of multiple sound sources. It is demonstrating that the potential use of SFS technology can enhance emotional and immersive experiences by spatial acoustic expression.
Iglesias, Maria Insa, Jenkins, Mark, Morison, Gordon.  2021.  An Enhanced Photorealistic Immersive System using Augmented Situated Visualization within Virtual Reality. 2021 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW). :514–515.
This work presents a system which allows image data and extracted features from a real-world location to be captured and modelled in a Virtual Reality (VR) environment combined with Augmented Situated Visualizations (ASV) overlaid and registered in a virtual environment. Combining these technologies with techniques from Data Science and Artificial Intelligence (AI)(such as image analysis and 3D reconstruction) allows the creation of a setting where remote locations can be modelled and interacted with from anywhere in the world. This Enhanced Photorealistic Immersive (EPI) system is highly adaptable to a wide range of use cases and users as it can be utilized to model and interact with any environment which can be captured as image data (such as training for operation in hazardous environments, accessibility solutions for exploration of historical/tourism locations and collaborative learning environments). A use case example focused on a structural examination of railway tunnels along with a pilot study is presented, which can demonstrate the usefulness of the EPI system.
Beck, Dennis, Morgado, Leonel, Lee, Mark, Gütl, Christian, Dengel, Andreas, Wang, Minjuan, Warren, Scott, Richter, Jonathon.  2021.  Towards an Immersive Learning Knowledge Tree - a Conceptual Framework for Mapping Knowledge and Tools in the Field. 2021 7th International Conference of the Immersive Learning Research Network (iLRN). :1–8.
The interdisciplinary field of immersive learning research is scattered. Combining efforts for better exploration of this field from the different disciplines requires researchers to communicate and coordinate effectively. We call upon the community of immersive learning researchers for planting the Knowledge Tree of Immersive Learning Research, a proposal for a systematization effort for this field, combining both scholarly and practical knowledge, cultivating a robust and ever-growing knowledge base and methodological toolbox for immersive learning. This endeavor aims at promoting evidence-informed practice and guiding future research in the field. This paper contributes with the rationale for three objectives: 1) Developing common scientific terminology amidst the community of researchers; 2) Cultivating a common understanding of methodology, and 3) Advancing common use of theoretical approaches, frameworks, and models.
2022-05-20
Sharipov, B. R., Perukhin, M. Yu., Mullayanov, B. I..  2021.  Statistical Analysis of Pseudorandom Sequences and Stegocontainers. 2021 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM). :434–439.
In the theoretical part of the paper, the scope of application of pseudorandom numbers and methods of their generation, as well as methods of statistical testing of pseudorandom sequences (PS) are considered. In the practical part of the work, the quality of PS obtained by Mersenne Twister [1] generator and the cryptographic generator of the RNGCryptoServiceProvider class of the. NET platform is evaluated. Based on the conducted research, the results of testing are obtained, which show that the quality of pseudorandom sequences generated by the cryptographic random number generator is higher than PS generated by Mersenne Twister. Additionally, based on statistical analysis by NIST and TestU01, a study is conducted in an attempt to establish the statistical indistinguishability of sets of empty- and stegocontainers created using a two-dimensional associative masking mechanism [2-4] based on a gamma of at least 500 KB in length. Research work was carried out under the guidance of R.F. Gibadullin, Associate Professor of the Department of Computer Systems of Kazan National Research Technical University named after A.N.Tupolev-KAI.
Chen, Zhaohui, Karabulut, Emre, Aysu, Aydin, Ma, Yuan, Jing, Jiwu.  2021.  An Efficient Non-Profiled Side-Channel Attack on the CRYSTALS-Dilithium Post-Quantum Signature. 2021 IEEE 39th International Conference on Computer Design (ICCD). :583–590.
Post-quantum digital signature is a critical primitive of computer security in the era of quantum hegemony. As a finalist of the post-quantum cryptography standardization process, the theoretical security of the CRYSTALS-Dilithium (Dilithium) signature scheme has been quantified to withstand classical and quantum cryptanalysis. However, there is an inherent power side-channel information leakage in its implementation instance due to the physical characteristics of hardware.This work proposes an efficient non-profiled Correlation Power Analysis (CPA) strategy on Dilithium to recover the secret key by targeting the underlying polynomial multiplication arithmetic. We first develop a conservative scheme with a reduced key guess space, which can extract a secret key coefficient with a 99.99% confidence using 157 power traces of the reference Dilithium implementation. However, this scheme suffers from the computational overhead caused by the large modulus in Dilithium signature. To further accelerate the CPA run-time, we propose a fast two-stage scheme that selects a smaller search space and then resolves false positives. We finally construct a hybrid scheme that combines the advantages of both schemes. Real-world experiment on the power measurement data shows that our hybrid scheme improves the attack’s execution time by 7.77×.