Biblio
with the continuous growing threat of cyber terrorism, the vulnerability of the industrial control systems (ICS) is the most common subject for security researchers now. Attacks on ICS systems keep increasing and their impact leads to human safety issues, equipment damage, system down, unusual output, loss of visibility and control, and various other catastrophic failures. Many of the industrial control systems are relatively insecure with chronic and pervasive vulnerabilities. Modbus-Tcpis one of the widely used communication protocols in the ICS/ Supervisory control and data acquisition (SCADA) system to transmit signals from instrumentation and control devices to the main controller of the control center. Modbus is a plain text protocol without any built-in security mechanisms, and Modbus is a standard communication protocol, widely used in critical infrastructure applications such as power systems, water, oil & gas, etc.. This paper proposes a passive security solution called Deep-security-scanner (DSS) tailored to Modbus-Tcpcommunication based Industrial control system (ICS). DSS solution detects attacks on Modbus-TcpIcs networks in a passive manner without disturbing the availability requirements of the system.
Digitization has pioneered to drive exceptional changes across all industries in the advancement of analytics, automation, and Artificial Intelligence (AI) and Machine Learning (ML). However, new business requirements associated with the efficiency benefits of digitalization are forcing increased connectivity between IT and OT networks, thereby increasing the attack surface and hence the cyber risk. Cyber threats are on the rise and securing industrial networks are challenging with the shortage of human resource in OT field, with more inclination to IT/OT convergence and the attackers deploy various hi-tech methods to intrude the control systems nowadays. We have developed an innovative real-time ICS cyber test kit to obtain the OT industrial network traffic data with various industrial attack vectors. In this paper, we have introduced the industrial datasets generated from ICS test kit, which incorporate the cyber-physical system of industrial operations. These datasets with a normal baseline along with different industrial hacking scenarios are analyzed for research purposes. Metadata is obtained from Deep packet inspection (DPI) of flow properties of network packets. DPI analysis provides more visibility into the contents of OT traffic based on communication protocols. The advancement in technology has led to the utilization of machine learning/artificial intelligence capability in IDS ICS SCADA. The industrial datasets are pre-processed, profiled and the abnormality is analyzed with DPI. The processed metadata is normalized for the easiness of algorithm analysis and modelled with machine learning-based latest deep learning ensemble LSTM algorithms for anomaly detection. The deep learning approach has been used nowadays for enhanced OT IDS performances.
In this study, a novel decentralized authentication model is proposed for establishing a secure communications structure in VoIP applications. The proposed scheme considers a distributed architecture called the blockchain. With this scheme, we highlight the multimedia data is more resistant to some of the potential attacks according to the centralized architecture. Our scheme presents the overall system authentication architecture, and it is suitable for mutual authentication in terms of privacy and anonymity. We construct an ECC-based model in the encryption infrastructure because our structure is time-constrained during communications. This study differs from prior work in that blockchain platforms with ECC-Based Biometric Signature. We generate a biometric key for creating a unique ID value with ECC to verify the caller and device authentication together in blockchain. We validated the proposed model by comparing with the existing method in VoIP application used centralized architecture.