Visible to the public Biblio

Filters: Author is Xia, H.  [Clear All Filters]
2021-02-23
Xia, H., Gao, N., Peng, J., Mo, J., Wang, J..  2020.  Binarized Attributed Network Embedding via Neural Networks. 2020 International Joint Conference on Neural Networks (IJCNN). :1—8.
Traditional attributed network embedding methods are designed to map structural and attribute information of networks jointly into a continuous Euclidean space, while recently a novel branch of them named binarized attributed network embedding has emerged to learn binary codes in Hamming space, aiming to save time and memory costs and to naturally fit node retrieval task. However, current binarized attributed network embedding methods are scarce and mostly ignore the local attribute similarity between each pair of nodes. Besides, none of them attempt to control the independency of each dimension(bit) of the learned binary representation vectors. As existing methods still need improving, we propose an unsupervised Neural-based Binarized Attributed Network Embedding (NBANE) approach. Firstly, we inherit the Weisfeiler-Lehman proximity matrix from predecessors to aggregate high-order features for each node. Secondly, we feed the aggregated features into an autoencoder with the attribute similarity penalizing term and the orthogonality term to make further dimension reduction. To solve the problem of integer optimization we adopt the relaxation-quantization method during the process of training neural networks. Empirically, we evaluate the performance of NBANE through node classification and clustering tasks on three real-world datasets and study a case on fast retrieval in academic networks. Our method achieves better performance over state- of-the-art baselines methods of various types.
2020-12-07
Xia, H., Xiao, F., Zhang, S., Hu, C., Cheng, X..  2019.  Trustworthiness Inference Framework in the Social Internet of Things: A Context-Aware Approach. IEEE INFOCOM 2019 - IEEE Conference on Computer Communications. :838–846.
The concept of social networking is integrated into Internet of things (IoT) to socialize smart objects by mimicking human behaviors, leading to a new paradigm of Social Internet of Things (SIoT). A crucial problem that needs to be solved is how to establish reliable relationships autonomously among objects, i.e., building trust. This paper focuses on exploring an efficient context-aware trustworthiness inference framework to address this issue. Based on the sociological and psychological principles of trust generation between human beings, the proposed framework divides trust into two types: familiarity trust and similarity trust. The familiarity trust can be calculated by direct trust and recommendation trust, while the similarity trust can be calculated based on external similarity trust and internal similarity trust. We subsequently present concrete methods for the calculation of different trust elements. In particular, we design a kernel-based nonlinear multivariate grey prediction model to predict the direct trust of a specific object, which acts as the core module of the entire framework. Besides, considering the fuzziness and uncertainty in the concept of trust, we introduce the fuzzy logic method to synthesize these trust elements. The experimental results verify the validity of the core module and the resistance to attacks of this framework.
2017-11-27
Qin, Y., Wang, H., Jia, Z., Xia, H..  2016.  A flexible and scalable implementation of elliptic curve cryptography over GF(p) based on ASIP. 2016 IEEE 35th International Performance Computing and Communications Conference (IPCCC). :1–8.

Public-key cryptography schemes are widely used due to their high level of security. As a very efficient one among public-key cryptosystems, elliptic curve cryptography (ECC) has been studied for years. Researchers used to improve the efficiency of ECC through point multiplication, which is the most important and complex operation of ECC. In our research, we use special families of curves and prime fields which have special properties. After that, we introduce the instruction set architecture (ISA) extension method to accelerate this algorithm (192-bit private key) and build an ECC\_ASIP model with six new ECC custom instructions. Finally, the ECC\_ASIP model is implemented in a field-programmable gate array (FPGA) platform. The persuasive experiments have been conducted to evaluate the performance of our new model in the aspects of the performance, the code storage space and hardware resources. Experimental results show that our processor improves 69.6% in the execution efficiency and requires only 6.2% more hardware resources.