Visible to the public Biblio

Filters: Author is Li, G.  [Clear All Filters]
2018-11-14
Shao, Y., Liu, B., Li, G., Yan, R..  2017.  A Fault Diagnosis Expert System for Flight Control Software Based on SFMEA and SFTA. 2017 IEEE International Conference on Software Quality, Reliability and Security Companion (QRS-C). :626–627.
Many accidents occurred frequently in aerospace applications, traditional software reliability analysis methods are not enough for modern flight control software. Developing a comprehensive, effective and intelligent method for software fault diagnosis is urgent for airborne software engineering. Under this background, we constructed a fault diagnosis expert system for flight control software which combines software failure mode and effect analysis with software fault tree analysis. To simplify the analysis, the software fault knowledge of four modules is acquired by reliability analysis methods. Then by taking full advantage of the CLIPS shell, knowledge representation and inference engine can be realized smoothly. Finally, we integrated CLIPS into VC++ to achieve visualization, fault diagnosis and inference for flight control software can be performed in the human-computer interaction interface. The results illustrate that the system is able to diagnose software fault, analysis the reasons and present some reasonable solutions like a human expert.
2017-12-04
Zhang, Q., Ma, Z., Li, G., Qian, Z., Guo, X..  2016.  Temperature-dependent demagnetization nonlinear Wiener model with neural network for PM synchronous machines in electric vehicle. 2016 19th International Conference on Electrical Machines and Systems (ICEMS). :1–4.

The inevitable temperature raise leads to the demagnetization of permanent magnet synchronous motor (PMSM), that is undesirable in the application of electrical vehicle. This paper presents a nonlinear demagnetization model taking into account temperature with the Wiener structure and neural network characteristics. The remanence and intrinsic coercivity are chosen as intermediate variables, thus the relationship between motor temperature and maximal permanent magnet flux is described by the proposed neural Wiener model. Simulation and experimental results demonstrate the precision of temperature dependent demagnetization model. This work makes the basis of temperature compensation for the output torque from PMSM.