Biblio
Filters: Author is Ren, H. [Clear All Filters]
A2G2V: Automatic Attack Graph Generation and Visualization and Its Applications to Computer and SCADA Networks. IEEE Transactions on Systems, Man, and Cybernetics: Systems. 50:3488–3498.
.
2020. Securing cyber-physical systems (CPS) and Internet of Things (IoT) systems requires the identification of how interdependence among existing atomic vulnerabilities may be exploited by an adversary to stitch together an attack that can compromise the system. Therefore, accurate attack graphs play a significant role in systems security. A manual construction of the attack graphs is tedious and error-prone, this paper proposes a model-checking-based automated attack graph generator and visualizer (A2G2V). The proposed A2G2V algorithm uses existing model-checking tools, an architecture description tool, and our own code to generate an attack graph that enumerates the set of all possible sequences in which atomic-level vulnerabilities can be exploited to compromise system security. The architecture description tool captures a formal representation of the networked system, its atomic vulnerabilities, their pre-and post-conditions, and security property of interest. A model-checker is employed to automatically identify an attack sequence in the form of a counterexample. Our own code integrated with the model-checker parses the counterexamples, encodes those for specification relaxation, and iterates until all attack sequences are revealed. Finally, a visualization tool has also been incorporated with A2G2V to generate a graphical representation of the generated attack graph. The results are illustrated through application to computer as well as control (SCADA) networks.
Resource allocation based on clustering algorithm for hybrid device-to-device networks. 2017 9th International Conference on Wireless Communications and Signal Processing (WCSP). :1–6.
.
2017. In order to improve the spectrum utilization rate of Device-to-Device (D2D) communication, we study the hybrid resource allocation problem, which allows both the resource reuse and resource dedicated mode to work simultaneously. Meanwhile, multiple D2D devices are permitted to share uplink cellular resources with some designated cellular user equipment (CUE). Combined with the transmission requirement of different users, the optimized resource allocation problem is built which is a NP-hard problem. A heuristic greedy throughput maximization (HGTM) based on clustering algorithm is then proposed to solve the above problem. Numerical results demonstrate that the proposed HGTM outperforms existing algorithms in the sum throughput, CUEs SINR performance and the number of accessed D2D deceives.