Visible to the public Biblio

Filters: Author is Matischek, R.  [Clear All Filters]
2018-10-26
Ulz, T., Pieber, T., Steger, C., Matischek, R., Bock, H..  2017.  Towards trustworthy data in networked control systems: A hardware-based approach. 2017 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA). :1–8.

The importance of Networked Control Systems (NCS) is steadily increasing due to recent trends such as smart factories. Correct functionality of such NCS needs to be protected as malfunctioning systems could have severe consequences for the controlled process or even threaten human lives. However, with the increase in NCS, also attacks targeting these systems are becoming more frequent. To mitigate attacks that utilize captured sensor data in an NCS, transferred data needs to be protected. While using well-known methods such as Transport Layer Security (TLS) might be suitable to protect the data, resource constraint devices such as sensors often are not powerful enough to perform the necessary cryptographic operations. Also, as we will show in this paper, applying simple encryption in an NCS may enable easy Denial-of-Service (DoS) attacks by attacking single bits of the encrypted data. Therefore, in this paper, we present a hardware-based approach that enables sensors to perform the necessary encryption while being robust against (injected) bit failures.

2018-01-23
Ulz, T., Pieber, T., Steger, C., Lesjak, C., Bock, H., Matischek, R..  2017.  SECURECONFIG: NFC and QR-code based hybrid approach for smart sensor configuration. 2017 IEEE International Conference on RFID (RFID). :41–46.

In smart factories and smart homes, devices such as smart sensors are connected to the Internet. Independent of the context in which such a smart sensor is deployed, the possibility to change its configuration parameters in a secure way is essential. Existing solutions do provide only minimal security or do not allow to transfer arbitrary configuration data. In this paper, we present an NFC- and QR-code based configuration interface for smart sensors which improves the security and practicability of the configuration altering process while introducing as little overhead as possible. We present a protocol for configuration as well as a hardware extension including a dedicated security controller (SC) for smart sensors. For customers, no additional hardware other than a commercially available smartphone will be necessary which makes the proposed approach highly applicable for smart factory and smart home contexts alike.

2017-12-20
Ulz, T., Pieber, T., Steger, C., Haas, S., Matischek, R., Bock, H..  2017.  Hardware-Secured Configuration and Two-Layer Attestation Architecture for Smart Sensors. 2017 Euromicro Conference on Digital System Design (DSD). :229–236.
Summary form only given. Strong light-matter coupling has been recently successfully explored in the GHz and THz [1] range with on-chip platforms. New and intriguing quantum optical phenomena have been predicted in the ultrastrong coupling regime [2], when the coupling strength Ω becomes comparable to the unperturbed frequency of the system ω. We recently proposed a new experimental platform where we couple the inter-Landau level transition of an high-mobility 2DEG to the highly subwavelength photonic mode of an LC meta-atom [3] showing very large Ω/ωc = 0.87. Our system benefits from the collective enhancement of the light-matter coupling which comes from the scaling of the coupling Ω ∝ √n, were n is the number of optically active electrons. In our previous experiments [3] and in literature [4] this number varies from 104-103 electrons per meta-atom. We now engineer a new cavity, resonant at 290 GHz, with an extremely reduced effective mode surface Seff = 4 × 10-14 m2 (FE simulations, CST), yielding large field enhancements above 1500 and allowing to enter the few (\textbackslashtextless;100) electron regime. It consist of a complementary metasurface with two very sharp metallic tips separated by a 60 nm gap (Fig.1(a, b)) on top of a single triangular quantum well. THz-TDS transmission experiments as a function of the applied magnetic field reveal strong anticrossing of the cavity mode with linear cyclotron dispersion. Measurements for arrays of only 12 cavities are reported in Fig.1(c). On the top horizontal axis we report the number of electrons occupying the topmost Landau level as a function of the magnetic field. At the anticrossing field of B=0.73 T we measure approximately 60 electrons ultra strongly coupled (Ω/ω- \textbackslashtextbar\textbackslashtextbar