Visible to the public Biblio

Filters: Author is Fang, Y.  [Clear All Filters]
2019-06-10
Hu, Y., Li, X., Liu, J., Ding, H., Gong, Y., Fang, Y..  2018.  Mitigating Traffic Analysis Attack in Smartphones with Edge Network Assistance. 2018 IEEE International Conference on Communications (ICC). :1–6.

With the growth of smartphone sales and app usage, fingerprinting and identification of smartphone apps have become a considerable threat to user security and privacy. Traffic analysis is one of the most common methods for identifying apps. Traditional countermeasures towards traffic analysis includes traffic morphing and multipath routing. The basic idea of multipath routing is to increase the difficulty for adversary to eavesdrop all traffic by splitting traffic into several subflows and transmitting them through different routes. Previous works in multipath routing mainly focus on Wireless Sensor Networks (WSNs) or Mobile Ad Hoc Networks (MANETs). In this paper, we propose a multipath routing scheme for smartphones with edge network assistance to mitigate traffic analysis attack. We consider an adversary with limited capability, that is, he can only intercept the traffic of one node following certain attack probability, and try to minimize the traffic an adversary can intercept. We formulate our design as a flow routing optimization problem. Then a heuristic algorithm is proposed to solve the problem. Finally, we present the simulation results for our scheme and justify that our scheme can effectively protect smartphones from traffic analysis attack.

2017-12-20
Fang, Y., Dickerson, S. J..  2017.  Achieving Swarm Intelligence with Spiking Neural Oscillators. 2017 IEEE International Conference on Rebooting Computing (ICRC). :1–4.

Mimicking the collaborative behavior of biological swarms, such as bird flocks and ant colonies, Swarm Intelligence algorithms provide efficient solutions for various optimization problems. On the other hand, a computational model of the human brain, spiking neural networks, has been showing great promise in recognition, inference, and learning, due to recent emergence of neuromorphic hardware for high-efficient and low-power computing. Through bridging these two distinct research fields, we propose a novel computing paradigm that implements the swarm intelligence with a population of coupled spiking neural oscillators in basic leaky integrate-and-fire (LIF) model. Our model behaves as a meta-heuristic searching conducted by multiple collaborative agents. In this design, the oscillating neurons serve as agents in the swarm, search for solutions in frequency coding and communicate with each other through spikes. The firing rate of each agent is adaptive to other agents with better solutions and the optimal solution is rendered as the swarm synchronization is reached. We apply the proposed method to the parameter optimization in several test objective functions and demonstrate its effectiveness and efficiency. Our new computing paradigm expands the computational power of coupled spiking neurons in the field of solving optimization problem and brings opportunities for the connection between individual intelligence and swarm intelligence.