Visible to the public Biblio

Filters: Author is Mehrpouyan, H.  [Clear All Filters]
2021-04-27
Phillips, T., McJunkin, T., Rieger, C., Gardner, J., Mehrpouyan, H..  2020.  An Operational Resilience Metric for Modern Power Distribution Systems. 2020 IEEE 20th International Conference on Software Quality, Reliability and Security Companion (QRS-C). :334—342.

The electrical power system is the backbone of our nations critical infrastructure. It has been designed to withstand single component failures based on a set of reliability metrics which have proven acceptable during normal operating conditions. However, in recent years there has been an increasing frequency of extreme weather events. Many have resulted in widespread long-term power outages, proving reliability metrics do not provide adequate energy security. As a result, researchers have focused their efforts resilience metrics to ensure efficient operation of power systems during extreme events. A resilient system has the ability to resist, adapt, and recover from disruptions. Therefore, resilience has demonstrated itself as a promising concept for currently faced challenges in power distribution systems. In this work, we propose an operational resilience metric for modern power distribution systems. The metric is based on the aggregation of system assets adaptive capacity in real and reactive power. This metric gives information to the magnitude and duration of a disturbance the system can withstand. We demonstrate resilience metric in a case study under normal operation and during a power contingency on a microgrid. In the future, this information can be used by operators to make more informed decisions based on system resilience in an effort to prevent power outages.

2018-05-24
Joshaghani, R., Mehrpouyan, H..  2017.  A Model-Checking Approach for Enforcing Purpose-Based Privacy Policies. 2017 IEEE Symposium on Privacy-Aware Computing (PAC). :178–179.

With the growth of Internet in many different aspects of life, users are required to share private information more than ever. Hence, users need a privacy management tool that can enforce complex and customized privacy policies. In this paper, we propose a privacy management system that not only allows users to define complex privacy policies for data sharing actions, but also monitors users' behavior and relationships to generate realistic policies. In addition, the proposed system utilizes formal modeling and model-checking approach to prove that information disclosures are valid and privacy policies are consistent with one another.

2018-02-06
Mehrpouyan, H., Azpiazu, I. M., Pera, M. S..  2017.  Measuring Personality for Automatic Elicitation of Privacy Preferences. 2017 IEEE Symposium on Privacy-Aware Computing (PAC). :84–95.

The increasing complexity and ubiquity in user connectivity, computing environments, information content, and software, mobile, and web applications transfers the responsibility of privacy management to the individuals. Hence, making it extremely difficult for users to maintain the intelligent and targeted level of privacy protection that they need and desire, while simultaneously maintaining their ability to optimally function. Thus, there is a critical need to develop intelligent, automated, and adaptable privacy management systems that can assist users in managing and protecting their sensitive data in the increasingly complex situations and environments that they find themselves in. This work is a first step in exploring the development of such a system, specifically how user personality traits and other characteristics can be used to help automate determination of user sharing preferences for a variety of user data and situations. The Big-Five personality traits of openness, conscientiousness, extroversion, agreeableness, and neuroticism are examined and used as inputs into several popular machine learning algorithms in order to assess their ability to elicit and predict user privacy preferences. Our results show that the Big-Five personality traits can be used to significantly improve the prediction of user privacy preferences in a number of contexts and situations, and so using machine learning approaches to automate the setting of user privacy preferences has the potential to greatly reduce the burden on users while simultaneously improving the accuracy of their privacy preferences and security.