Visible to the public Biblio

Filters: Author is Allodi, Luca  [Clear All Filters]
2023-02-03
Kersten, Leon, Burda, Pavlo, Allodi, Luca, Zannone, Nicola.  2022.  Investigating the Effect of Phishing Believability on Phishing Reporting. 2022 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW). :117–128.
Phishing emails are becoming more and more sophisticated, making current detection techniques ineffective. The reporting of phishing emails from users is, thus, crucial for organizations to detect phishing attacks and mitigate their effect. Despite extensive research on how the believability of a phishing email affects detection rates, there is little to no research about the relationship between the believability of a phishing email and the associated reporting rate. In this work, we present a controlled experiment with 446 subjects to evaluate how the reporting rate of a phishing email is linked to its believability and detection rate. Our results show that the reporting rate decreases as the believability of the email increases and that around half of the subjects who detect the mail as phishing, have an intention to report the email. However, the group intending to report an email is not a subset of the group detecting the mail as phishing, suggesting that reporting is still a concept misunderstood by many.
ISSN: 2768-0657
2021-12-20
Meijaard, Yoram, Meiler, Peter-Paul, Allodi, Luca.  2021.  Modelling Disruptive APTs targeting Critical Infrastructure using Military Theory. 2021 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :178–190.
Disruptive Advanced Persistent Threats (D-APTs) are a new sophisticated class of cyberattacks targeting critical infrastructures. Whereas regular APTs are well-described in the literature, no existing APT kill chain model incorporates the disruptive actions of D-APTs and can be used to represent DAPTs in data. To this aim, the contribution of this paper is twofold: first, we review the evolution of existing APT kill chain models. Second, we present a novel D-APT model based on existing ATP models and military theory. The model describes the strategic objective setting, the operational kill chain and the tactics of the attacker, as well as the defender’s critical infrastructure, processes and societal function.
2018-05-02
Allodi, Luca, Etalle, Sandro.  2017.  Towards Realistic Threat Modeling: Attack Commodification, Irrelevant Vulnerabilities, and Unrealistic Assumptions. Proceedings of the 2017 Workshop on Automated Decision Making for Active Cyber Defense. :23–26.
Current threat models typically consider all possible ways an attacker can penetrate a system and assign probabilities to each path according to some metric (e.g. time-to-compromise). In this paper we discuss how this view hinders the realness of both technical (e.g. attack graphs) and strategic (e.g. game theory) approaches of current threat modeling, and propose to steer away by looking more carefully at attack characteristics and attacker environment. We use a toy threat model for ICS attacks to show how a realistic view of attack instances can emerge from a simple analysis of attack phases and attacker limitations.
2018-02-06
Allodi, Luca, Massacci, Fabio.  2017.  Attack Potential in Impact and Complexity. Proceedings of the 12th International Conference on Availability, Reliability and Security. :32:1–32:6.

Vulnerability exploitation is reportedly one of the main attack vectors against computer systems. Yet, most vulnerabilities remain unexploited by attackers. It is therefore of central importance to identify vulnerabilities that carry a high 'potential for attack'. In this paper we rely on Symantec data on real attacks detected in the wild to identify a trade-off in the Impact and Complexity of a vulnerability in terms of attacks that it generates; exploiting this effect, we devise a readily computable estimator of the vulnerability's Attack Potential that reliably estimates the expected volume of attacks against the vulnerability. We evaluate our estimator performance against standard patching policies by measuring foiled attacks and demanded workload expressed as the number of vulnerabilities entailed to patch. We show that our estimator significantly improves over standard patching policies by ruling out low-risk vulnerabilities, while maintaining invariant levels of coverage against attacks in the wild. Our estimator can be used as a first aid for vulnerability prioritisation to focus assessment efforts on high-potential vulnerabilities.