Visible to the public Biblio

Filters: Author is Etalle, Sandro  [Clear All Filters]
2020-06-15
Abbasi, Ali, Wetzels, Jos, Holz, Thorsten, Etalle, Sandro.  2019.  Challenges in Designing Exploit Mitigations for Deeply Embedded Systems. 2019 IEEE European Symposium on Security and Privacy (EuroS P). :31–46.

Memory corruption vulnerabilities have been around for decades and rank among the most prevalent vulnerabilities in embedded systems. Yet this constrained environment poses unique design and implementation challenges that significantly complicate the adoption of common hardening techniques. Combined with the irregular and involved nature of embedded patch management, this results in prolonged vulnerability exposure windows and vulnerabilities that are relatively easy to exploit. Considering the sensitive and critical nature of many embedded systems, this situation merits significant improvement. In this work, we present the first quantitative study of exploit mitigation adoption in 42 embedded operating systems, showing the embedded world to significantly lag behind the general-purpose world. To improve the security of deeply embedded systems, we subsequently present μArmor, an approach to address some of the key gaps identified in our quantitative analysis. μArmor raises the bar for exploitation of embedded memory corruption vulnerabilities, while being adoptable on the short term without incurring prohibitive extra performance or storage costs.

2018-07-18
Fauri, Davide, dos Santos, Daniel Ricardo, Costante, Elisa, den Hartog, Jerry, Etalle, Sandro, Tonetta, Stefano.  2017.  From System Specification to Anomaly Detection (and Back). Proceedings of the 2017 Workshop on Cyber-Physical Systems Security and PrivaCy. :13–24.

Industrial control systems have stringent safety and security demands. High safety assurance can be obtained by specifying the system with possible faults and monitoring it to ensure these faults are properly addressed. Addressing security requires considering unpredictable attacker behavior. Anomaly detection, with its data driven approach, can detect simple unusual behavior and system-based attacks like the propagation of malware; on the other hand, anomaly detection is less suitable to detect more complex \textbackslashtextbackslashemph\process-based\ attacks and it provides little actionability in presence of an alert. The alternative to anomaly detection is to use specification-based intrusion detection, which is more suitable to detect process-based attacks, but is typically expensive to set up and less scalable. We propose to combine a lightweight formal system specification with anomaly detection, providing data-driven monitoring. The combination is based on mapping elements of the specification to elements of the network traffic. This allows extracting locations to monitor and relevant context information from the formal specification, thus semantically enriching the raised alerts and making them actionable. On the other hand, it also allows under-specification of data-based properties in the formal model; some predicates can be left uninterpreted and the monitoring can be used to learn a model for them. We demonstrate our methodology on a smart manufacturing use case.

2018-05-02
Allodi, Luca, Etalle, Sandro.  2017.  Towards Realistic Threat Modeling: Attack Commodification, Irrelevant Vulnerabilities, and Unrealistic Assumptions. Proceedings of the 2017 Workshop on Automated Decision Making for Active Cyber Defense. :23–26.
Current threat models typically consider all possible ways an attacker can penetrate a system and assign probabilities to each path according to some metric (e.g. time-to-compromise). In this paper we discuss how this view hinders the realness of both technical (e.g. attack graphs) and strategic (e.g. game theory) approaches of current threat modeling, and propose to steer away by looking more carefully at attack characteristics and attacker environment. We use a toy threat model for ICS attacks to show how a realistic view of attack instances can emerge from a simple analysis of attack phases and attacker limitations.
2017-04-03
Yüksel, Ömer, den Hartog, Jerry, Etalle, Sandro.  2016.  Reading Between the Fields: Practical, Effective Intrusion Detection for Industrial Control Systems. Proceedings of the 31st Annual ACM Symposium on Applied Computing. :2063–2070.

Detection of previously unknown attacks and malicious messages is a challenging problem faced by modern network intrusion detection systems. Anomaly-based solutions, despite being able to detect unknown attacks, have not been used often in practice due to their high false positive rate, and because they provide little actionable information to the security officer in case of an alert. In this paper we focus on intrusion detection in industrial control systems networks and we propose an innovative, practical and semantics-aware framework for anomaly detection. The network communication model and alerts generated by our framework are userunderstandable, making them much easier to manage. At the same time the framework exhibits an excellent tradeoff between detection rate and false positive rate, which we show by comparing it with two existing payload-based anomaly detection methods on several ICS datasets.