Visible to the public Biblio

Filters: Author is Carle, G.  [Clear All Filters]
2019-09-04
Maltitz, M. von, Smarzly, S., Kinkelin, H., Carle, G..  2018.  A management framework for secure multiparty computation in dynamic environments. NOMS 2018 - 2018 IEEE/IFIP Network Operations and Management Symposium. :1–7.
Secure multiparty computation (SMC) is a promising technology for privacy-preserving collaborative computation. In the last years several feasibility studies have shown its practical applicability in different fields. However, it is recognized that administration, and management overhead of SMC solutions are still a problem. A vital next step is the incorporation of SMC in the emerging fields of the Internet of Things and (smart) dynamic environments. In these settings, the properties of these contexts make utilization of SMC even more challenging since some vital premises for its application regarding environmental stability and preliminary configuration are not initially fulfilled. We bridge this gap by providing FlexSMC, a management and orchestration framework for SMC which supports the discovery of nodes, supports a trust establishment between them and realizes robustness of SMC session by handling nodes failures and communication interruptions. The practical evaluation of FlexSMC shows that it enables the application of SMC in dynamic environments with reasonable performance penalties and computation durations allowing soft real-time and interactive use cases.
2018-02-06
Scheitle, Q., Gasser, O., Rouhi, M., Carle, G..  2017.  Large-Scale Classification of IPv6-IPv4 Siblings with Variable Clock Skew. 2017 Network Traffic Measurement and Analysis Conference (TMA). :1–9.

Linking the growing IPv6 deployment to existing IPv4 addresses is an interesting field of research, be it for network forensics, structural analysis, or reconnaissance. In this work, we focus on classifying pairs of server IPv6 and IPv4 addresses as siblings, i.e., running on the same machine. Our methodology leverages active measurements of TCP timestamps and other network characteristics, which we measure against a diverse ground truth of 682 hosts. We define and extract a set of features, including estimation of variable (opposed to constant) remote clock skew. On these features, we train a manually crafted algorithm as well as a machine-learned decision tree. By conducting several measurement runs and training in cross-validation rounds, we aim to create models that generalize well and do not overfit our training data. We find both models to exceed 99% precision in train and test performance. We validate scalability by classifying 149k siblings in a large-scale measurement of 371k sibling candidates. We argue that this methodology, thoroughly cross-validated and likely to generalize well, can aid comparative studies of IPv6 and IPv4 behavior in the Internet. Striving for applicability and replicability, we release ready-to-use source code and raw data from our study.