Visible to the public Biblio

Filters: Author is Yang, J.  [Clear All Filters]
2021-03-16
Ullah, A., Chen, X., Yang, J..  2020.  Design and Implementation of MobilityFirst Future Internet Testbed. 2020 3rd International Conference on Hot Information-Centric Networking (HotICN). :170—174.

Recently, Future Internet research has attracted enormous attentions towards the design of clean slate Future Internet Architecture. A large number of research projects has been established by National Science Foundation's (NSF), Future Internet Architecture (FIA) program in this area. One of these projects is MobilityFirst, which recognizes the predominance of mobile networking and aims to address the challenges of this paradigm shift. Future Internet Architecture Projects, are usually deploying on large scale experimental networks for testing and evaluating the properties of new architecture and protocols. Currently only some specific experiments, like routing and name resolution scalability in MobilityFirst architecture has been performed over the ORBIT and GENI platforms. However, to move from this experimental networking to technology trials with real-world users and applications deployment of alternative testbeds are necessary. In this paper, MobilityFirst Future Internet testbed is designed and deployed on Future Networks Laboratory, University of Science and Technology of China, China. Which provides a realistic environment for MobilityFirst experiments. Next, in this paper, for MF traffic transmission between MobilityFirst networks through current networking protocols (TCP), MobilityFirst Proxies are designed and implemented. Furthermore, the results and experience obtained from experiments over proposed testbed are presented.

2021-03-04
Yangchun, Z., Zhao, Y., Yang, J..  2020.  New Virus Infection Technology and Its Detection. 2020 IEEE 11th International Conference on Software Engineering and Service Science (ICSESS). :388—394.

Computer virus detection technology is an important basic security technology in the information age. The current detection technology has a high success rate for the detection of known viruses and known virus infection technologies, but the development of detection technology often lags behind the development of computer virus infection technology. Under Windows system, there are many kinds of file viruses, which change rapidly, and pose a continuous security threat to users. The research of new file virus infection technology can provide help for the development of virus detection technology. In this paper, a new virus infection technology based on dynamic binary analysis is proposed to execute file virus infection. Using the new virus infection technology, the infected executable file can be detected in the experimental environment. At the same time, this paper discusses the detection method of new virus infection technology. We hope to provide help for the development of virus detection technology from the perspective of virus design.

2021-01-20
Wang, H., Yang, J., Wang, X., Li, F., Liu, W., Liang, H..  2020.  Feature Fingerprint Extraction and Abnormity Diagnosis Method of the Vibration on the GIS. 2020 IEEE International Conference on High Voltage Engineering and Application (ICHVE). :1—4.

Mechanical faults of Gas Insulated Switchgear (GIS) often occurred, which may cause serious losses. Detecting vibration signal was effective for condition monitoring and fault diagnosis of GIS. The vibration characteristic of GIS in service was detected and researched based on a developed testing system in this paper, and feature fingerprint extraction method was proposed to evaluate vibration characteristics and diagnose mechanical defects. Through analyzing the spectrum of the vibration signal, we could see that vibration frequency of operating GIS was about 100Hz under normal condition. By means of the wavelet transformation, the vibration fingerprint was extracted for the diagnosis of mechanical vibration. The mechanical vibration characteristic of GIS including circuit breaker and arrester in service was detected, we could see that the frequency distribution of abnormal vibration signal was wider, it contained a lot of high harmonic components besides the 100Hz component, and the vibration acoustic fingerprint was totally different from the normal ones, that is, by comparing the frequency spectra and vibration fingerprint, the mechanical faults of GIS could be found effectively.

2020-12-02
Wang, Q., Zhao, W., Yang, J., Wu, J., Hu, W., Xing, Q..  2019.  DeepTrust: A Deep User Model of Homophily Effect for Trust Prediction. 2019 IEEE International Conference on Data Mining (ICDM). :618—627.

Trust prediction in online social networks is crucial for information dissemination, product promotion, and decision making. Existing work on trust prediction mainly utilizes the network structure or the low-rank approximation of a trust network. These approaches can suffer from the problem of data sparsity and prediction accuracy. Inspired by the homophily theory, which shows a pervasive feature of social and economic networks that trust relations tend to be developed among similar people, we propose a novel deep user model for trust prediction based on user similarity measurement. It is a comprehensive data sparsity insensitive model that combines a user review behavior and the item characteristics that this user is interested in. With this user model, we firstly generate a user's latent features mined from user review behavior and the item properties that the user cares. Then we develop a pair-wise deep neural network to further learn and represent these user features. Finally, we measure the trust relations between a pair of people by calculating the user feature vector cosine similarity. Extensive experiments are conducted on two real-world datasets, which demonstrate the superior performance of the proposed approach over the representative baseline works.

2020-11-09
Yang, J., Kang, X., Wong, E. K., Shi, Y..  2018.  Deep Learning with Feature Reuse for JPEG Image Steganalysis. 2018 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC). :533–538.
It is challenging to detect weak hidden information in a JPEG compressed image. In this paper, we propose a 32-layer convolutional neural networks (CNNs) with feature reuse by concatenating all features from previous layers. The proposed method can improve the flow of gradient and information, and the shared features and bottleneck layers in the proposed CNN model further reduce the number of parameters dramatically. The experimental results shown that the proposed method significantly reduce the detection error rate compared with the existing JPEG steganalysis methods, e.g. state-of-the-art XuNet method and the conventional SCA-GFR method. Compared with XuNet method and conventional method SCA-GFR in detecting J-UNIWARD at 0.1 bpnzAC (bit per non-zero AC DCT coefficient), the proposed method can reduce detection error rate by 4.33% and 6.55% respectively.
2019-06-17
Yang, J., Jeong, J. P..  2018.  An Automata-based Security Policy Translation for Network Security Functions. 2018 International Conference on Information and Communication Technology Convergence (ICTC). :268–272.

This paper proposes the design of a security policy translator in Interface to Network Security Functions (I2NSF) framework. Also, this paper shows the benefits of designing security policy translations. I2NSF is an architecture for providing various Network Security Functions (NSFs) to users. I2NSF user should be able to use NSF even if user has no overall knowledge of NSFs. Generally, policies which are generated by I2NSF user contain abstract data because users do not consider the attributes of NSFs when creating policies. Therefore, the I2NSF framework requires a translator that automatically finds the NSFs which is required for policy when Security Controller receives a security policy from the user and translates it for selected NSFs. We satisfied the above requirements by modularizing the translator through Automata theory.

2019-01-31
Kumbhar, S. S., Lee, Y., Yang, J..  2018.  Hybrid Encryption for Securing SharedPreferences of Android Applications. 2018 1st International Conference on Data Intelligence and Security (ICDIS). :246–249.

Most mobile applications generate local data on internal memory with SharedPreference interface of an Android operating system. Therefore, many possible loopholes can access the confidential information such as passwords. We propose a hybrid encryption approach for SharedPreferences to protect the leaking confidential information through the source code. We develop an Android application and store some data using SharedPreference. We produce different experiments with which this data could be accessed. We apply Hybrid encryption approach combining encryption approach with Android Keystore system, for providing better encryption algorithm to hide sensitive data.

2018-06-11
Yang, J., Zhou, C., Zhao, Y..  2017.  A security protection approach based on software defined network for inter-area communication in industrial control systems. 12th International Conference on System Safety and Cyber-Security 2017 (SCSS). :1–6.

Currently, security protection in Industrial Control Systems has become a hot topic, and a great number of defense techniques have sprung up. As one of the most effective approaches, area isolation has the exceptional advantages and is widely used to prevent attacks or hazards propagating. However, most existing methods for inter-area communication protection present some limitations, i.e., excessively depending on the analyzing rules, affecting original communication. Additionally, the network architecture and data flow direction can hardly be adjusted after being deployed. To address these problems, a dynamical and customized communication protection technology is proposed in this paper. In detail, a security inter-area communication architecture based on Software Defined Network is designed firstly, where devices or subsystems can be dynamically added into or removed from the communication link. And then, a security inspection method based on information entropy is presented for deep network behaviors analysis. According to the security analysis results, the communications in the network can be adjusted in time. Finally, simulations are constructed, and the results indicate that the proposed approach is sensitive and effective for cyber-attacks detection.

2017-12-20
Lin, J., Li, Q., Yang, J..  2017.  Frequency diverse array beamforming for physical-layer security with directionally-aligned legitimate user and eavesdropper. 2017 25th European Signal Processing Conference (EUSIPCO). :2166–2170.
The conventional physical-layer (PHY) security approaches, e.g., transmit beamforming and artificial noise (AN)-based design, may fail when the channels of legitimate user (LU) and eavesdropper (Eve) are close correlated. Due to the highly directional transmission feature of millimeter-wave (mmWave), this may occur in mmWave transmissions as the transmitter, Eve and LU are aligned in the same direction exactly. To handle the PHY security problem with directionally-aligned LU and Eve, we propose a novel frequency diverse array (FDA) beamforming approach to differentiating the LU and Eve. By intentionally introducing some frequency offsets across the antennas, the FDA beamforming generates an angle-range dependent beampattern. As a consequence, it can degrade the Eve's reception and thus achieve PHY security. In this paper, we maximize the secrecy rate by jointly optimizing the frequency offsets and the beamformer. This secrecy rate maximization (SRM) problem is hard to solve due to the tightly coupled variables. Nevertheless, we show that it can be reformulated into a form depending only on the frequency offsets. Building upon this reformulation, we identify some cases where the SRM problem can be optimally solved in closed form. Numerical results demonstrate the efficacy of FDA beamforming in achieving PHY security, even for aligned LU and Eve.
2017-03-08
Mao, Y., Yang, J., Zhu, B., Yang, Y..  2015.  A new mesh simplification algorithm based on quadric error metric. 2015 IEEE 5th International Conference on Consumer Electronics - Berlin (ICCE-Berlin). :463–466.

This paper proposes an improved mesh simplification algorithm based on quadric error metrics (QEM) to efficiently processing the huge data in 3D image processing. This method fully uses geometric information around vertices to avoid model edge from being simplified and to keep details. Meanwhile, the differences between simplified triangular meshes and equilateral triangles are added as weights of errors to decrease the possibilities of narrow triangle and then to avoid the visual mutation. Experiments show that our algorithm has obvious advantages over the time cost, and can better save the visual characteristics of model, which is suitable for solving most image processing, that is, "Real-time interactive" problem.