Biblio
To decouple the multi-axis motion in the 6 degrees of freedom magnetically levitated actuators (MLAs), this paper introduces a numerical method to model the force and torque distribution. Taking advantage of the Gaussian quadrature, the concept of coil node is developed to simplify the Lorentz integral into the summation of the interaction between each magnetic node in the remanence region and each coil node in the coil region. Utilizing the coordinate transformation in the numerical method, the computation burden is independent of the position and the rotation angle of the moving part. Finally, the experimental results prove that the force and torque predicted by the numerical model are rigidly consistent with the measurement, and the force and torque in all directions are decoupled properly based on the numerical solution. Compared with the harmonic model, the numerical wrench model is more suitable for the MLAs undertaking both the translational and rotational displacements.
Traditional information Security Risk Assessment algorithms are mainly used for evaluating small scale of information system, not suitable for massive information systems in Energy Internet. To solve the problem, this paper proposes an Information Security Risk Algorithm based on Dynamic Risk Propagation (ISRADRP). ISRADRP firstly divides information systems in the Energy Internet into different partitions according to their logical network location. Then, ISRADRP computes each partition's risk value without considering threat propagation effect via RM algorithm. Furthermore, ISRADRP calculates inside and outside propagation risk value for each partition according to Dependency Structure Matrix. Finally, the security bottleneck of systems will be identified and the overall risk value of information system will be obtained.