Biblio
Nowadays, an increasing number of IoT vendors have complied and deployed third-party code bases across different architectures. Therefore, to avoid the firmware from being affected by the same known vulnerabilities, searching known vulnerabilities in binary firmware across different architectures is more crucial than ever. However, most of existing vulnerability search methods are limited to the same architecture, there are only a few researches on cross-architecture cases, of which the accuracy is not high. In this paper, to promote the accuracy of existing cross-architecture vulnerability search methods, we propose a new approach based on Support Vector Machine (SVM) and Attributed Control Flow Graph (ACFG) to search known vulnerability in firmware across different architectures at function level. We employ a known vulnerability function to recognize suspicious functions in other binary firmware. First, considering from the internal and external characteristics of the functions, we extract the function level features and basic-block level features of the functions to be inspected. Second, we employ SVM to recognize a little part of suspicious functions based on function level features. After the preliminary screening, we compute the graph similarity between the vulnerability function and suspicious functions based on their ACFGs. We have implemented our approach CVSSA, and employed the training samples to train the model with previous knowledge to improve the accuracy. We also search several vulnerabilities in the real-world firmware images, the experimental results show that CVSSA can be applied to the realistic scenarios.