Visible to the public Biblio

Filters: Author is Ma, X.  [Clear All Filters]
2021-03-29
Zhang, S., Ma, X..  2020.  A General Difficulty Control Algorithm for Proof-of-Work Based Blockchains. ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :3077–3081.
Designing an efficient difficulty control algorithm is an essential problem in Proof-of-Work (PoW) based blockchains because the network hash rate is randomly changing. This paper proposes a general difficulty control algorithm and provides insights for difficulty adjustment rules for PoW based blockchains. The proposed algorithm consists a two-layer neural network. It has low memory cost, meanwhile satisfying the fast-updating and low volatility requirements for difficulty adjustment. Real data from Ethereum are used in the simulations to prove that the proposed algorithm has better performance for the control of the block difficulty.
2020-12-11
Ma, X., Sun, X., Cheng, L., Guo, X., Liu, X., Wang, Z..  2019.  Parameter Setting of New Energy Sources Generator Rapid Frequency Response in Northwest Power Grid Based on Multi-Frequency Regulation Resources Coordinated Controlling. 2019 IEEE 8th International Conference on Advanced Power System Automation and Protection (APAP). :218—222.
Since 2016, the northwest power grid has organized new energy sources to participate in the rapid frequency regulation research and carried out pilot test work at the sending end large power grid. The experimental results show that new energy generator has the ability to participate in the grid's rapid frequency regulation, and its performance is better than that of conventional power supply units. This paper analyses the requirements for fast frequency control of the sending end large power grid in northwest China, and proposes the segmented participation indexes of photovoltaic and wind power in the frequency regulation of power grids. In accordance with the idea of "clear responsibilities, various types of unit coordination", the parameter setting of new energy sources rapid frequency regulation is completed based on the coordinated control based on multi-frequency regulation resources in northwest power grid. The new energy fast frequency regulation model was established, through the PSASP power grid stability simulation program and the large-scale power grid stability simulation analysis was completed. The simulation results show that the wind power and photovoltaic adopting differential rapid frequency regulation parameters can better utilize the rapid frequency regulation capability of various types of power sources, realize the coordinated rapid frequency regulation of all types of units, and effectively improve the frequency security prevention and control level of the sending end large power grid.
2019-10-08
Liu, Y., Yuan, X., Li, M., Zhang, W., Zhao, Q., Zhong, J., Cao, Y., Li, Y., Chen, L., Li, H. et al..  2018.  High Speed Device-Independent Quantum Random Number Generation without Detection Loophole. 2018 Conference on Lasers and Electro-Optics (CLEO). :1–2.

We report a an experimental study of device-independent quantum random number generation based on an detection-loophole free Bell test with entangled photons. After considering statistical fluctuations and applying an 80 Gb × 45.6 Mb Toeplitz matrix hashing, we achieve a final random bit rate of 114 bits/s, with a failure probability less than 10-5.

2019-03-18
Lin, W., Cai, S., Wei, B., Ma, X..  2018.  Coding Theorem for Systematic LDGM Codes Under List Decoding. 2018 IEEE Information Theory Workshop (ITW). :1–5.
This paper is concerned with three ensembles of systematic low density generator matrix (LDGM) codes, all of which were provably capacity-achieving in terms of bit error rate (BER). This, however, does not necessarily imply that they achieve the capacity in terms of frame error rate (FER), as seen from a counterexample constructed in this paper. We then show that the first and second ensembles are capacity-achieving under list decoding over binary-input output symmetric (BIOS) memoryless channels. We point out that, in principle, the equivocation due to list decoding can be removed with negligible rate loss by the use of the concatenated codes. Simulation results show that the considered convolutional (spatially-coupled) LDGM code is capacity-approaching with an iterative belief propagation decoding algorithm.
2019-03-11
Li, Z., Xie, X., Ma, X., Guan, Z..  2018.  Trustworthiness Optimization of Industrial Cluster Network Platform Based on Blockchain. 2018 8th International Conference on Logistics, Informatics and Service Sciences (LISS). :1–6.

Industrial cluster is an important organization form and carrier of development of small and medium-sized enterprises, and information service platform is an important facility of industrial cluster. Improving the credibility of the network platform is conducive to eliminate the adverse effects of distrust and information asymmetry on industrial clusters. The decentralization, transparency, openness, and intangibility of block chain technology make it an inevitable choice for trustworthiness optimization of industrial cluster network platform. This paper first studied on trusted standard of industry cluster network platform and construct a new trusted framework of industry cluster network platform. Then the paper focus on trustworthiness optimization of data layer and application layer of the platform. The purpose of this paper is to build an industrial cluster network platform with data access, information trustworthiness, function availability, high-speed and low consumption, and promote the sustainable and efficient development of industrial cluster.

2018-05-01
Lin, H., Zhao, D., Ran, L., Han, M., Tian, J., Xiang, J., Ma, X., Zhong, Y..  2017.  CVSSA: Cross-Architecture Vulnerability Search in Firmware Based on Support Vector Machine and Attributed Control Flow Graph. 2017 International Conference on Dependable Systems and Their Applications (DSA). :35–41.

Nowadays, an increasing number of IoT vendors have complied and deployed third-party code bases across different architectures. Therefore, to avoid the firmware from being affected by the same known vulnerabilities, searching known vulnerabilities in binary firmware across different architectures is more crucial than ever. However, most of existing vulnerability search methods are limited to the same architecture, there are only a few researches on cross-architecture cases, of which the accuracy is not high. In this paper, to promote the accuracy of existing cross-architecture vulnerability search methods, we propose a new approach based on Support Vector Machine (SVM) and Attributed Control Flow Graph (ACFG) to search known vulnerability in firmware across different architectures at function level. We employ a known vulnerability function to recognize suspicious functions in other binary firmware. First, considering from the internal and external characteristics of the functions, we extract the function level features and basic-block level features of the functions to be inspected. Second, we employ SVM to recognize a little part of suspicious functions based on function level features. After the preliminary screening, we compute the graph similarity between the vulnerability function and suspicious functions based on their ACFGs. We have implemented our approach CVSSA, and employed the training samples to train the model with previous knowledge to improve the accuracy. We also search several vulnerabilities in the real-world firmware images, the experimental results show that CVSSA can be applied to the realistic scenarios.

2018-04-04
Ran, L., Lu, L., Lin, H., Han, M., Zhao, D., Xiang, J., Yu, H., Ma, X..  2017.  An Experimental Study of Four Methods for Homology Analysis of Firmware Vulnerability. 2017 International Conference on Dependable Systems and Their Applications (DSA). :42–50.

In the production process of embedded device, due to the frequent reuse of third-party libraries or development kits, there are large number of same vulnerabilities that appear in more than one firmware. Homology analysis is often used in detecting this kind of vulnerabilities caused by code reuse or third-party reuse and in the homology analysis, the widely used methods are mainly Binary difference analysis, Normalized compression distance, String feature matching and Fuzz hash. But when we use these methods for homology analysis, we found that the detection result is not ideal and there is a high false positive rate. Focusing on this problem, we analyzed the application scenarios of these four methods and their limitations by combining different methods and different types of files and the experiments show that the combination of methods and files have a better performance in homology analysis.

2017-03-08
Ma, T., Zhang, H., Qian, J., Liu, S., Zhang, X., Ma, X..  2015.  The Design of Brand Cosmetics Anti-counterfeiting System Based on RFID Technology. 2015 International Conference on Network and Information Systems for Computers. :184–189.

The digital authentication security technology is widely used in the current brand cosmetics as key anti-counterfeiting technology, yet this technology is prone to "false security", "hard security" and "non-security" phenomena. This paper researches the current cosmetics brand distribution channels and sales methods also analyses the cosmetics brands' demand for RFID technology anti-counterfeiting security system, then proposes a security system based on RFID technology for brand cosmetics. The system is based on a typical distributed RFID tracking and tracing system which is the most widely used system-EPC system. This security system based on RFID technology for brand cosmetics in the paper is a visual information management system for luxury cosmetics brand. It can determine the source of the product timely and effectively, track and trace products' logistics information and prevent fake goods and gray goods getting into the normal supply chain channels.