Biblio
We report a an experimental study of device-independent quantum random number generation based on an detection-loophole free Bell test with entangled photons. After considering statistical fluctuations and applying an 80 Gb × 45.6 Mb Toeplitz matrix hashing, we achieve a final random bit rate of 114 bits/s, with a failure probability less than 10-5.
Industrial cluster is an important organization form and carrier of development of small and medium-sized enterprises, and information service platform is an important facility of industrial cluster. Improving the credibility of the network platform is conducive to eliminate the adverse effects of distrust and information asymmetry on industrial clusters. The decentralization, transparency, openness, and intangibility of block chain technology make it an inevitable choice for trustworthiness optimization of industrial cluster network platform. This paper first studied on trusted standard of industry cluster network platform and construct a new trusted framework of industry cluster network platform. Then the paper focus on trustworthiness optimization of data layer and application layer of the platform. The purpose of this paper is to build an industrial cluster network platform with data access, information trustworthiness, function availability, high-speed and low consumption, and promote the sustainable and efficient development of industrial cluster.
Nowadays, an increasing number of IoT vendors have complied and deployed third-party code bases across different architectures. Therefore, to avoid the firmware from being affected by the same known vulnerabilities, searching known vulnerabilities in binary firmware across different architectures is more crucial than ever. However, most of existing vulnerability search methods are limited to the same architecture, there are only a few researches on cross-architecture cases, of which the accuracy is not high. In this paper, to promote the accuracy of existing cross-architecture vulnerability search methods, we propose a new approach based on Support Vector Machine (SVM) and Attributed Control Flow Graph (ACFG) to search known vulnerability in firmware across different architectures at function level. We employ a known vulnerability function to recognize suspicious functions in other binary firmware. First, considering from the internal and external characteristics of the functions, we extract the function level features and basic-block level features of the functions to be inspected. Second, we employ SVM to recognize a little part of suspicious functions based on function level features. After the preliminary screening, we compute the graph similarity between the vulnerability function and suspicious functions based on their ACFGs. We have implemented our approach CVSSA, and employed the training samples to train the model with previous knowledge to improve the accuracy. We also search several vulnerabilities in the real-world firmware images, the experimental results show that CVSSA can be applied to the realistic scenarios.
In the production process of embedded device, due to the frequent reuse of third-party libraries or development kits, there are large number of same vulnerabilities that appear in more than one firmware. Homology analysis is often used in detecting this kind of vulnerabilities caused by code reuse or third-party reuse and in the homology analysis, the widely used methods are mainly Binary difference analysis, Normalized compression distance, String feature matching and Fuzz hash. But when we use these methods for homology analysis, we found that the detection result is not ideal and there is a high false positive rate. Focusing on this problem, we analyzed the application scenarios of these four methods and their limitations by combining different methods and different types of files and the experiments show that the combination of methods and files have a better performance in homology analysis.
The digital authentication security technology is widely used in the current brand cosmetics as key anti-counterfeiting technology, yet this technology is prone to "false security", "hard security" and "non-security" phenomena. This paper researches the current cosmetics brand distribution channels and sales methods also analyses the cosmetics brands' demand for RFID technology anti-counterfeiting security system, then proposes a security system based on RFID technology for brand cosmetics. The system is based on a typical distributed RFID tracking and tracing system which is the most widely used system-EPC system. This security system based on RFID technology for brand cosmetics in the paper is a visual information management system for luxury cosmetics brand. It can determine the source of the product timely and effectively, track and trace products' logistics information and prevent fake goods and gray goods getting into the normal supply chain channels.