Visible to the public Biblio

Filters: Author is Sankaran, S.  [Clear All Filters]
2020-12-21
Jithish, J., Sankaran, S., Achuthan, K..  2020.  Towards Ensuring Trustworthiness in Cyber-Physical Systems: A Game-Theoretic Approach. 2020 International Conference on COMmunication Systems NETworkS (COMSNETS). :626–629.

The emergence of Cyber-Physical Systems (CPSs) is a potential paradigm shift for the usage of Information and Communication Technologies (ICT). From predominantly a facilitator of information and communication services, the role of ICT in the present age has expanded to the management of objects and resources in the physical world. Thus, it is imperative to devise mechanisms to ensure the trustworthiness of data to secure vulnerable devices against security threats. This work presents an analytical framework based on non-cooperative game theory to evaluate the trustworthiness of individual sensor nodes that constitute the CPS. The proposed game-theoretic model captures the factors impacting the trustworthiness of CPS sensor nodes. Further, the model is used to estimate the Nash equilibrium solution of the game, to derive a trust threshold criterion. The trust threshold represents the minimum trust score required to be maintained by individual sensor nodes during CPS operation. Sensor nodes with trust scores below the threshold are potentially malicious and may be removed or isolated to ensure the secure operation of CPS.

2018-05-02
Rajan, A., Jithish, J., Sankaran, S..  2017.  Sybil attack in IOT: Modelling and defenses. 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI). :2323–2327.

Internet of Things (IoT) is an emerging paradigm in information technology (IT) that integrates advancements in sensing, computing and communication to offer enhanced services in everyday life. IoTs are vulnerable to sybil attacks wherein an adversary fabricates fictitious identities or steals the identities of legitimate nodes. In this paper, we model sybil attacks in IoT and evaluate its impact on performance. We also develop a defense mechanism based on behavioural profiling of nodes. We develop an enhanced AODV (EAODV) protocol by using the behaviour approach to obtain the optimal routes. In EAODV, the routes are selected based on the trust value and hop count. Sybil nodes are identified and discarded based on the feedback from neighbouring nodes. Evaluation of our protocol in ns-2 simulator demonstrates the effectiveness of our approach in identifying and detecting sybil nodes in IoT network.